vladmandic commited on
Commit
b073eba
·
verified ·
1 Parent(s): 2dae130

Upload f_lite.model.py

Browse files

if file is referenced from model_index.json, it should be part of the repo, otherwise makes model loading extremely unflexible.

Files changed (1) hide show
  1. dit_model/f_lite.model.py +455 -0
dit_model/f_lite.model.py ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DiT with cross attention
2
+
3
+ import math
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import torch.utils.checkpoint
8
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
9
+ from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
10
+ from diffusers.models.modeling_utils import ModelMixin
11
+ from diffusers.utils.accelerate_utils import apply_forward_hook
12
+ from einops import rearrange
13
+ from peft import get_peft_model_state_dict, set_peft_model_state_dict
14
+ from torch import nn
15
+
16
+
17
+ def timestep_embedding(t, dim, max_period=10000):
18
+ half = dim // 2
19
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
20
+ device=t.device
21
+ )
22
+ args = t[:, None].float() * freqs[None]
23
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
24
+
25
+ return embedding
26
+
27
+
28
+ class RMSNorm(nn.Module):
29
+ def __init__(self, dim, eps=1e-6, trainable=False):
30
+ super().__init__()
31
+ self.eps = eps
32
+ if trainable:
33
+ self.weight = nn.Parameter(torch.ones(dim))
34
+ else:
35
+ self.weight = None
36
+
37
+ def forward(self, x):
38
+ x_dtype = x.dtype
39
+ x = x.float()
40
+ norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
41
+ if self.weight is not None:
42
+ return (x * norm * self.weight).to(dtype=x_dtype)
43
+ else:
44
+ return (x * norm).to(dtype=x_dtype)
45
+
46
+
47
+ class QKNorm(nn.Module):
48
+ """Normalizing the query and the key independently, as Flux proposes"""
49
+
50
+ def __init__(self, dim, trainable=False):
51
+ super().__init__()
52
+ self.query_norm = RMSNorm(dim, trainable=trainable)
53
+ self.key_norm = RMSNorm(dim, trainable=trainable)
54
+
55
+ def forward(self, q, k):
56
+ q = self.query_norm(q)
57
+ k = self.key_norm(k)
58
+ return q, k
59
+
60
+
61
+ class Attention(nn.Module):
62
+ def __init__(
63
+ self,
64
+ dim,
65
+ num_heads=8,
66
+ qkv_bias=False,
67
+ is_self_attn=True,
68
+ cross_attn_input_size=None,
69
+ residual_v=False,
70
+ dynamic_softmax_temperature=False,
71
+ ):
72
+ super().__init__()
73
+ assert dim % num_heads == 0
74
+ self.num_heads = num_heads
75
+ self.head_dim = dim // num_heads
76
+ self.scale = self.head_dim**-0.5
77
+ self.is_self_attn = is_self_attn
78
+ self.residual_v = residual_v
79
+ self.dynamic_softmax_temperature = dynamic_softmax_temperature
80
+
81
+ if is_self_attn:
82
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
83
+ else:
84
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
85
+ self.context_kv = nn.Linear(cross_attn_input_size, dim * 2, bias=qkv_bias)
86
+
87
+ self.proj = nn.Linear(dim, dim, bias=False)
88
+
89
+ if residual_v:
90
+ self.lambda_param = nn.Parameter(torch.tensor(0.5).reshape(1))
91
+
92
+ self.qk_norm = QKNorm(self.head_dim)
93
+
94
+ def forward(self, x, context=None, v_0=None, rope=None):
95
+ if self.is_self_attn:
96
+ qkv = self.qkv(x)
97
+ qkv = rearrange(qkv, "b l (k h d) -> k b h l d", k=3, h=self.num_heads)
98
+ q, k, v = qkv.unbind(0)
99
+
100
+ if self.residual_v and v_0 is not None:
101
+ v = self.lambda_param * v + (1 - self.lambda_param) * v_0
102
+
103
+ if rope is not None:
104
+ # print(q.shape, rope[0].shape, rope[1].shape)
105
+ q = apply_rotary_emb(q, rope[0], rope[1])
106
+ k = apply_rotary_emb(k, rope[0], rope[1])
107
+
108
+ # https://arxiv.org/abs/2306.08645
109
+ # https://arxiv.org/abs/2410.01104
110
+ # ratioonale is that if tokens get larger, categorical distribution get more uniform
111
+ # so you want to enlargen entropy.
112
+
113
+ token_length = q.shape[2]
114
+ if self.dynamic_softmax_temperature:
115
+ ratio = math.sqrt(math.log(token_length) / math.log(1040.0)) # 1024 + 16
116
+ k = k * ratio
117
+ q, k = self.qk_norm(q, k)
118
+
119
+ else:
120
+ q = rearrange(self.q(x), "b l (h d) -> b h l d", h=self.num_heads)
121
+ kv = rearrange(
122
+ self.context_kv(context),
123
+ "b l (k h d) -> k b h l d",
124
+ k=2,
125
+ h=self.num_heads,
126
+ )
127
+ k, v = kv.unbind(0)
128
+ q, k = self.qk_norm(q, k)
129
+
130
+ x = F.scaled_dot_product_attention(q, k, v)
131
+ x = rearrange(x, "b h l d -> b l (h d)")
132
+ x = self.proj(x)
133
+ return x, v if self.is_self_attn else None
134
+
135
+
136
+ class DiTBlock(nn.Module):
137
+ def __init__(
138
+ self,
139
+ hidden_size,
140
+ cross_attn_input_size,
141
+ num_heads,
142
+ mlp_ratio=4.0,
143
+ qkv_bias=True,
144
+ residual_v=False,
145
+ dynamic_softmax_temperature=False,
146
+ ):
147
+ super().__init__()
148
+ self.hidden_size = hidden_size
149
+ self.norm1 = RMSNorm(hidden_size, trainable=qkv_bias)
150
+ self.self_attn = Attention(
151
+ hidden_size,
152
+ num_heads=num_heads,
153
+ qkv_bias=qkv_bias,
154
+ is_self_attn=True,
155
+ residual_v=residual_v,
156
+ dynamic_softmax_temperature=dynamic_softmax_temperature,
157
+ )
158
+
159
+ if cross_attn_input_size is not None:
160
+ self.norm2 = RMSNorm(hidden_size, trainable=qkv_bias)
161
+ self.cross_attn = Attention(
162
+ hidden_size,
163
+ num_heads=num_heads,
164
+ qkv_bias=qkv_bias,
165
+ is_self_attn=False,
166
+ cross_attn_input_size=cross_attn_input_size,
167
+ dynamic_softmax_temperature=dynamic_softmax_temperature,
168
+ )
169
+ else:
170
+ self.norm2 = None
171
+ self.cross_attn = None
172
+
173
+ self.norm3 = RMSNorm(hidden_size, trainable=qkv_bias)
174
+ mlp_hidden = int(hidden_size * mlp_ratio)
175
+ self.mlp = nn.Sequential(
176
+ nn.Linear(hidden_size, mlp_hidden),
177
+ nn.GELU(),
178
+ nn.Linear(mlp_hidden, hidden_size),
179
+ )
180
+
181
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 9 * hidden_size, bias=True))
182
+
183
+ self.adaLN_modulation[-1].weight.data.zero_()
184
+ self.adaLN_modulation[-1].bias.data.zero_()
185
+
186
+ # @torch.compile(mode='reduce-overhead')
187
+ def forward(self, x, context, c, v_0=None, rope=None):
188
+ (
189
+ shift_sa,
190
+ scale_sa,
191
+ gate_sa,
192
+ shift_ca,
193
+ scale_ca,
194
+ gate_ca,
195
+ shift_mlp,
196
+ scale_mlp,
197
+ gate_mlp,
198
+ ) = self.adaLN_modulation(c).chunk(9, dim=1)
199
+
200
+ scale_sa = scale_sa[:, None, :]
201
+ scale_ca = scale_ca[:, None, :]
202
+ scale_mlp = scale_mlp[:, None, :]
203
+
204
+ shift_sa = shift_sa[:, None, :]
205
+ shift_ca = shift_ca[:, None, :]
206
+ shift_mlp = shift_mlp[:, None, :]
207
+
208
+ gate_sa = gate_sa[:, None, :]
209
+ gate_ca = gate_ca[:, None, :]
210
+ gate_mlp = gate_mlp[:, None, :]
211
+
212
+ norm_x = self.norm1(x.clone())
213
+ norm_x = norm_x * (1 + scale_sa) + shift_sa
214
+ attn_out, v = self.self_attn(norm_x, v_0=v_0, rope=rope)
215
+ x = x + attn_out * gate_sa
216
+
217
+ if self.norm2 is not None:
218
+ norm_x = self.norm2(x)
219
+ norm_x = norm_x * (1 + scale_ca) + shift_ca
220
+ x = x + self.cross_attn(norm_x, context)[0] * gate_ca
221
+
222
+ norm_x = self.norm3(x)
223
+ norm_x = norm_x * (1 + scale_mlp) + shift_mlp
224
+ x = x + self.mlp(norm_x) * gate_mlp
225
+
226
+ return x, v
227
+
228
+
229
+ class PatchEmbed(nn.Module):
230
+ def __init__(self, patch_size=16, in_channels=3, embed_dim=768):
231
+ super().__init__()
232
+ self.patch_proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
233
+ self.patch_size = patch_size
234
+
235
+ def forward(self, x):
236
+ B, C, H, W = x.shape
237
+ x = self.patch_proj(x)
238
+ x = rearrange(x, "b c h w -> b (h w) c")
239
+ return x
240
+
241
+
242
+ class TwoDimRotary(torch.nn.Module):
243
+ def __init__(self, dim, base=10000, h=256, w=256):
244
+ super().__init__()
245
+ self.inv_freq = torch.FloatTensor([1.0 / (base ** (i / dim)) for i in range(0, dim, 2)])
246
+ self.h = h
247
+ self.w = w
248
+
249
+ t_h = torch.arange(h, dtype=torch.float32)
250
+ t_w = torch.arange(w, dtype=torch.float32)
251
+
252
+ freqs_h = torch.outer(t_h, self.inv_freq).unsqueeze(1) # h, 1, d / 2
253
+ freqs_w = torch.outer(t_w, self.inv_freq).unsqueeze(0) # 1, w, d / 2
254
+ freqs_h = freqs_h.repeat(1, w, 1) # h, w, d / 2
255
+ freqs_w = freqs_w.repeat(h, 1, 1) # h, w, d / 2
256
+ freqs_hw = torch.cat([freqs_h, freqs_w], 2) # h, w, d
257
+
258
+ self.register_buffer("freqs_hw_cos", freqs_hw.cos())
259
+ self.register_buffer("freqs_hw_sin", freqs_hw.sin())
260
+
261
+ def forward(self, x, height_width=None, extend_with_register_tokens=0):
262
+ if height_width is not None:
263
+ this_h, this_w = height_width
264
+ else:
265
+ this_hw = x.shape[1]
266
+ this_h, this_w = int(this_hw**0.5), int(this_hw**0.5)
267
+
268
+ cos = self.freqs_hw_cos[0 : this_h, 0 : this_w]
269
+ sin = self.freqs_hw_sin[0 : this_h, 0 : this_w]
270
+
271
+ cos = cos.clone().reshape(this_h * this_w, -1)
272
+ sin = sin.clone().reshape(this_h * this_w, -1)
273
+
274
+ # append N of zero-attn tokens
275
+ if extend_with_register_tokens > 0:
276
+ cos = torch.cat(
277
+ [
278
+ torch.ones(extend_with_register_tokens, cos.shape[1]).to(cos.device),
279
+ cos,
280
+ ],
281
+ 0,
282
+ )
283
+ sin = torch.cat(
284
+ [
285
+ torch.zeros(extend_with_register_tokens, sin.shape[1]).to(sin.device),
286
+ sin,
287
+ ],
288
+ 0,
289
+ )
290
+
291
+ return cos[None, None, :, :], sin[None, None, :, :] # [1, 1, T + N, Attn-dim]
292
+
293
+
294
+ def apply_rotary_emb(x, cos, sin):
295
+ orig_dtype = x.dtype
296
+ x = x.to(dtype=torch.float32)
297
+ assert x.ndim == 4 # multihead attention
298
+ d = x.shape[3] // 2
299
+ x1 = x[..., :d]
300
+ x2 = x[..., d:]
301
+ y1 = x1 * cos + x2 * sin
302
+ y2 = x1 * (-sin) + x2 * cos
303
+ return torch.cat([y1, y2], 3).to(dtype=orig_dtype)
304
+
305
+
306
+ class DiT(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin): # type: ignore[misc]
307
+ @register_to_config
308
+ def __init__(
309
+ self,
310
+ in_channels=4,
311
+ patch_size=2,
312
+ hidden_size=1152,
313
+ depth=28,
314
+ num_heads=16,
315
+ mlp_ratio=4.0,
316
+ cross_attn_input_size=128,
317
+ residual_v=False,
318
+ train_bias_and_rms=True,
319
+ use_rope=True,
320
+ gradient_checkpoint=False,
321
+ dynamic_softmax_temperature=False,
322
+ rope_base=10000,
323
+ ):
324
+ super().__init__()
325
+
326
+ self.patch_embed = PatchEmbed(patch_size, in_channels, hidden_size)
327
+
328
+ if use_rope:
329
+ self.rope = TwoDimRotary(hidden_size // (2 * num_heads), base=rope_base, h=512, w=512)
330
+ else:
331
+ self.positional_embedding = nn.Parameter(torch.zeros(1, 2048, hidden_size))
332
+
333
+ self.register_tokens = nn.Parameter(torch.randn(1, 16, hidden_size))
334
+
335
+ self.time_embed = nn.Sequential(
336
+ nn.Linear(hidden_size, 4 * hidden_size),
337
+ nn.SiLU(),
338
+ nn.Linear(4 * hidden_size, hidden_size),
339
+ )
340
+
341
+ self.blocks = nn.ModuleList(
342
+ [
343
+ DiTBlock(
344
+ hidden_size=hidden_size,
345
+ num_heads=num_heads,
346
+ mlp_ratio=mlp_ratio,
347
+ cross_attn_input_size=cross_attn_input_size,
348
+ residual_v=residual_v,
349
+ qkv_bias=train_bias_and_rms,
350
+ dynamic_softmax_temperature=dynamic_softmax_temperature,
351
+ )
352
+ for _ in range(depth)
353
+ ]
354
+ )
355
+
356
+ self.final_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
357
+
358
+ self.final_norm = RMSNorm(hidden_size, trainable=train_bias_and_rms)
359
+ self.final_proj = nn.Linear(hidden_size, patch_size * patch_size * in_channels)
360
+ nn.init.zeros_(self.final_modulation[-1].weight)
361
+ nn.init.zeros_(self.final_modulation[-1].bias)
362
+ nn.init.zeros_(self.final_proj.weight)
363
+ nn.init.zeros_(self.final_proj.bias)
364
+ self.paramstatus = {}
365
+ for n, p in self.named_parameters():
366
+ self.paramstatus[n] = {
367
+ "shape": p.shape,
368
+ "requires_grad": p.requires_grad,
369
+ }
370
+
371
+ def save_lora_weights(self, save_directory):
372
+ """Save LoRA weights to a file"""
373
+ lora_state_dict = get_peft_model_state_dict(self)
374
+ torch.save(lora_state_dict, f"{save_directory}/lora_weights.pt")
375
+
376
+ def load_lora_weights(self, load_directory):
377
+ """Load LoRA weights from a file"""
378
+ lora_state_dict = torch.load(f"{load_directory}/lora_weights.pt")
379
+ set_peft_model_state_dict(self, lora_state_dict)
380
+
381
+ @apply_forward_hook
382
+ def forward(self, x, context, timesteps):
383
+ b, c, h, w = x.shape
384
+ x = self.patch_embed(x) # b, T, d
385
+
386
+ x = torch.cat([self.register_tokens.repeat(b, 1, 1), x], 1) # b, T + N, d
387
+
388
+ if self.config.use_rope:
389
+ cos, sin = self.rope(
390
+ x,
391
+ extend_with_register_tokens=16,
392
+ height_width=(h // self.config.patch_size, w // self.config.patch_size),
393
+ )
394
+ else:
395
+ x = x + self.positional_embedding.repeat(b, 1, 1)[:, : x.shape[1], :]
396
+ cos, sin = None, None
397
+
398
+ t_emb = timestep_embedding(timesteps * 1000, self.config.hidden_size).to(x.device, dtype=x.dtype)
399
+ t_emb = self.time_embed(t_emb)
400
+
401
+ v_0 = None
402
+
403
+ for _idx, block in enumerate(self.blocks):
404
+ if self.config.gradient_checkpoint:
405
+ x, v = torch.utils.checkpoint.checkpoint(
406
+ block,
407
+ x,
408
+ context,
409
+ t_emb,
410
+ v_0,
411
+ (cos, sin),
412
+ use_reentrant=False,
413
+ )
414
+ else:
415
+ x, v = block(x, context, t_emb, v_0, (cos, sin))
416
+ if v_0 is None:
417
+ v_0 = v
418
+
419
+ x = x[:, 16:, :]
420
+ final_shift, final_scale = self.final_modulation(t_emb).chunk(2, dim=1)
421
+ x = self.final_norm(x)
422
+ x = x * (1 + final_scale[:, None, :]) + final_shift[:, None, :]
423
+ x = self.final_proj(x)
424
+
425
+ x = rearrange(
426
+ x,
427
+ "b (h w) (p1 p2 c) -> b c (h p1) (w p2)",
428
+ h=h // self.config.patch_size,
429
+ w=w // self.config.patch_size,
430
+ p1=self.config.patch_size,
431
+ p2=self.config.patch_size,
432
+ )
433
+ return x
434
+
435
+
436
+ if __name__ == "__main__":
437
+ model = DiT(
438
+ in_channels=4,
439
+ patch_size=2,
440
+ hidden_size=1152,
441
+ depth=28,
442
+ num_heads=16,
443
+ mlp_ratio=4.0,
444
+ cross_attn_input_size=128,
445
+ residual_v=False,
446
+ train_bias_and_rms=True,
447
+ use_rope=True,
448
+ ).cuda()
449
+ print(
450
+ model(
451
+ torch.randn(1, 4, 64, 64).cuda(),
452
+ torch.randn(1, 37, 128).cuda(),
453
+ torch.tensor([1.0]).cuda(),
454
+ )
455
+ )