Upload f_lite.model.py
Browse filesif file is referenced from model_index.json, it should be part of the repo, otherwise makes model loading extremely unflexible.
- dit_model/f_lite.model.py +455 -0
dit_model/f_lite.model.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DiT with cross attention
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
11 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
12 |
+
from einops import rearrange
|
13 |
+
from peft import get_peft_model_state_dict, set_peft_model_state_dict
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
|
17 |
+
def timestep_embedding(t, dim, max_period=10000):
|
18 |
+
half = dim // 2
|
19 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
20 |
+
device=t.device
|
21 |
+
)
|
22 |
+
args = t[:, None].float() * freqs[None]
|
23 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
24 |
+
|
25 |
+
return embedding
|
26 |
+
|
27 |
+
|
28 |
+
class RMSNorm(nn.Module):
|
29 |
+
def __init__(self, dim, eps=1e-6, trainable=False):
|
30 |
+
super().__init__()
|
31 |
+
self.eps = eps
|
32 |
+
if trainable:
|
33 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
34 |
+
else:
|
35 |
+
self.weight = None
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
x_dtype = x.dtype
|
39 |
+
x = x.float()
|
40 |
+
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
41 |
+
if self.weight is not None:
|
42 |
+
return (x * norm * self.weight).to(dtype=x_dtype)
|
43 |
+
else:
|
44 |
+
return (x * norm).to(dtype=x_dtype)
|
45 |
+
|
46 |
+
|
47 |
+
class QKNorm(nn.Module):
|
48 |
+
"""Normalizing the query and the key independently, as Flux proposes"""
|
49 |
+
|
50 |
+
def __init__(self, dim, trainable=False):
|
51 |
+
super().__init__()
|
52 |
+
self.query_norm = RMSNorm(dim, trainable=trainable)
|
53 |
+
self.key_norm = RMSNorm(dim, trainable=trainable)
|
54 |
+
|
55 |
+
def forward(self, q, k):
|
56 |
+
q = self.query_norm(q)
|
57 |
+
k = self.key_norm(k)
|
58 |
+
return q, k
|
59 |
+
|
60 |
+
|
61 |
+
class Attention(nn.Module):
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
dim,
|
65 |
+
num_heads=8,
|
66 |
+
qkv_bias=False,
|
67 |
+
is_self_attn=True,
|
68 |
+
cross_attn_input_size=None,
|
69 |
+
residual_v=False,
|
70 |
+
dynamic_softmax_temperature=False,
|
71 |
+
):
|
72 |
+
super().__init__()
|
73 |
+
assert dim % num_heads == 0
|
74 |
+
self.num_heads = num_heads
|
75 |
+
self.head_dim = dim // num_heads
|
76 |
+
self.scale = self.head_dim**-0.5
|
77 |
+
self.is_self_attn = is_self_attn
|
78 |
+
self.residual_v = residual_v
|
79 |
+
self.dynamic_softmax_temperature = dynamic_softmax_temperature
|
80 |
+
|
81 |
+
if is_self_attn:
|
82 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
83 |
+
else:
|
84 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
85 |
+
self.context_kv = nn.Linear(cross_attn_input_size, dim * 2, bias=qkv_bias)
|
86 |
+
|
87 |
+
self.proj = nn.Linear(dim, dim, bias=False)
|
88 |
+
|
89 |
+
if residual_v:
|
90 |
+
self.lambda_param = nn.Parameter(torch.tensor(0.5).reshape(1))
|
91 |
+
|
92 |
+
self.qk_norm = QKNorm(self.head_dim)
|
93 |
+
|
94 |
+
def forward(self, x, context=None, v_0=None, rope=None):
|
95 |
+
if self.is_self_attn:
|
96 |
+
qkv = self.qkv(x)
|
97 |
+
qkv = rearrange(qkv, "b l (k h d) -> k b h l d", k=3, h=self.num_heads)
|
98 |
+
q, k, v = qkv.unbind(0)
|
99 |
+
|
100 |
+
if self.residual_v and v_0 is not None:
|
101 |
+
v = self.lambda_param * v + (1 - self.lambda_param) * v_0
|
102 |
+
|
103 |
+
if rope is not None:
|
104 |
+
# print(q.shape, rope[0].shape, rope[1].shape)
|
105 |
+
q = apply_rotary_emb(q, rope[0], rope[1])
|
106 |
+
k = apply_rotary_emb(k, rope[0], rope[1])
|
107 |
+
|
108 |
+
# https://arxiv.org/abs/2306.08645
|
109 |
+
# https://arxiv.org/abs/2410.01104
|
110 |
+
# ratioonale is that if tokens get larger, categorical distribution get more uniform
|
111 |
+
# so you want to enlargen entropy.
|
112 |
+
|
113 |
+
token_length = q.shape[2]
|
114 |
+
if self.dynamic_softmax_temperature:
|
115 |
+
ratio = math.sqrt(math.log(token_length) / math.log(1040.0)) # 1024 + 16
|
116 |
+
k = k * ratio
|
117 |
+
q, k = self.qk_norm(q, k)
|
118 |
+
|
119 |
+
else:
|
120 |
+
q = rearrange(self.q(x), "b l (h d) -> b h l d", h=self.num_heads)
|
121 |
+
kv = rearrange(
|
122 |
+
self.context_kv(context),
|
123 |
+
"b l (k h d) -> k b h l d",
|
124 |
+
k=2,
|
125 |
+
h=self.num_heads,
|
126 |
+
)
|
127 |
+
k, v = kv.unbind(0)
|
128 |
+
q, k = self.qk_norm(q, k)
|
129 |
+
|
130 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
131 |
+
x = rearrange(x, "b h l d -> b l (h d)")
|
132 |
+
x = self.proj(x)
|
133 |
+
return x, v if self.is_self_attn else None
|
134 |
+
|
135 |
+
|
136 |
+
class DiTBlock(nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
hidden_size,
|
140 |
+
cross_attn_input_size,
|
141 |
+
num_heads,
|
142 |
+
mlp_ratio=4.0,
|
143 |
+
qkv_bias=True,
|
144 |
+
residual_v=False,
|
145 |
+
dynamic_softmax_temperature=False,
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
self.hidden_size = hidden_size
|
149 |
+
self.norm1 = RMSNorm(hidden_size, trainable=qkv_bias)
|
150 |
+
self.self_attn = Attention(
|
151 |
+
hidden_size,
|
152 |
+
num_heads=num_heads,
|
153 |
+
qkv_bias=qkv_bias,
|
154 |
+
is_self_attn=True,
|
155 |
+
residual_v=residual_v,
|
156 |
+
dynamic_softmax_temperature=dynamic_softmax_temperature,
|
157 |
+
)
|
158 |
+
|
159 |
+
if cross_attn_input_size is not None:
|
160 |
+
self.norm2 = RMSNorm(hidden_size, trainable=qkv_bias)
|
161 |
+
self.cross_attn = Attention(
|
162 |
+
hidden_size,
|
163 |
+
num_heads=num_heads,
|
164 |
+
qkv_bias=qkv_bias,
|
165 |
+
is_self_attn=False,
|
166 |
+
cross_attn_input_size=cross_attn_input_size,
|
167 |
+
dynamic_softmax_temperature=dynamic_softmax_temperature,
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
self.norm2 = None
|
171 |
+
self.cross_attn = None
|
172 |
+
|
173 |
+
self.norm3 = RMSNorm(hidden_size, trainable=qkv_bias)
|
174 |
+
mlp_hidden = int(hidden_size * mlp_ratio)
|
175 |
+
self.mlp = nn.Sequential(
|
176 |
+
nn.Linear(hidden_size, mlp_hidden),
|
177 |
+
nn.GELU(),
|
178 |
+
nn.Linear(mlp_hidden, hidden_size),
|
179 |
+
)
|
180 |
+
|
181 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 9 * hidden_size, bias=True))
|
182 |
+
|
183 |
+
self.adaLN_modulation[-1].weight.data.zero_()
|
184 |
+
self.adaLN_modulation[-1].bias.data.zero_()
|
185 |
+
|
186 |
+
# @torch.compile(mode='reduce-overhead')
|
187 |
+
def forward(self, x, context, c, v_0=None, rope=None):
|
188 |
+
(
|
189 |
+
shift_sa,
|
190 |
+
scale_sa,
|
191 |
+
gate_sa,
|
192 |
+
shift_ca,
|
193 |
+
scale_ca,
|
194 |
+
gate_ca,
|
195 |
+
shift_mlp,
|
196 |
+
scale_mlp,
|
197 |
+
gate_mlp,
|
198 |
+
) = self.adaLN_modulation(c).chunk(9, dim=1)
|
199 |
+
|
200 |
+
scale_sa = scale_sa[:, None, :]
|
201 |
+
scale_ca = scale_ca[:, None, :]
|
202 |
+
scale_mlp = scale_mlp[:, None, :]
|
203 |
+
|
204 |
+
shift_sa = shift_sa[:, None, :]
|
205 |
+
shift_ca = shift_ca[:, None, :]
|
206 |
+
shift_mlp = shift_mlp[:, None, :]
|
207 |
+
|
208 |
+
gate_sa = gate_sa[:, None, :]
|
209 |
+
gate_ca = gate_ca[:, None, :]
|
210 |
+
gate_mlp = gate_mlp[:, None, :]
|
211 |
+
|
212 |
+
norm_x = self.norm1(x.clone())
|
213 |
+
norm_x = norm_x * (1 + scale_sa) + shift_sa
|
214 |
+
attn_out, v = self.self_attn(norm_x, v_0=v_0, rope=rope)
|
215 |
+
x = x + attn_out * gate_sa
|
216 |
+
|
217 |
+
if self.norm2 is not None:
|
218 |
+
norm_x = self.norm2(x)
|
219 |
+
norm_x = norm_x * (1 + scale_ca) + shift_ca
|
220 |
+
x = x + self.cross_attn(norm_x, context)[0] * gate_ca
|
221 |
+
|
222 |
+
norm_x = self.norm3(x)
|
223 |
+
norm_x = norm_x * (1 + scale_mlp) + shift_mlp
|
224 |
+
x = x + self.mlp(norm_x) * gate_mlp
|
225 |
+
|
226 |
+
return x, v
|
227 |
+
|
228 |
+
|
229 |
+
class PatchEmbed(nn.Module):
|
230 |
+
def __init__(self, patch_size=16, in_channels=3, embed_dim=768):
|
231 |
+
super().__init__()
|
232 |
+
self.patch_proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
233 |
+
self.patch_size = patch_size
|
234 |
+
|
235 |
+
def forward(self, x):
|
236 |
+
B, C, H, W = x.shape
|
237 |
+
x = self.patch_proj(x)
|
238 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
239 |
+
return x
|
240 |
+
|
241 |
+
|
242 |
+
class TwoDimRotary(torch.nn.Module):
|
243 |
+
def __init__(self, dim, base=10000, h=256, w=256):
|
244 |
+
super().__init__()
|
245 |
+
self.inv_freq = torch.FloatTensor([1.0 / (base ** (i / dim)) for i in range(0, dim, 2)])
|
246 |
+
self.h = h
|
247 |
+
self.w = w
|
248 |
+
|
249 |
+
t_h = torch.arange(h, dtype=torch.float32)
|
250 |
+
t_w = torch.arange(w, dtype=torch.float32)
|
251 |
+
|
252 |
+
freqs_h = torch.outer(t_h, self.inv_freq).unsqueeze(1) # h, 1, d / 2
|
253 |
+
freqs_w = torch.outer(t_w, self.inv_freq).unsqueeze(0) # 1, w, d / 2
|
254 |
+
freqs_h = freqs_h.repeat(1, w, 1) # h, w, d / 2
|
255 |
+
freqs_w = freqs_w.repeat(h, 1, 1) # h, w, d / 2
|
256 |
+
freqs_hw = torch.cat([freqs_h, freqs_w], 2) # h, w, d
|
257 |
+
|
258 |
+
self.register_buffer("freqs_hw_cos", freqs_hw.cos())
|
259 |
+
self.register_buffer("freqs_hw_sin", freqs_hw.sin())
|
260 |
+
|
261 |
+
def forward(self, x, height_width=None, extend_with_register_tokens=0):
|
262 |
+
if height_width is not None:
|
263 |
+
this_h, this_w = height_width
|
264 |
+
else:
|
265 |
+
this_hw = x.shape[1]
|
266 |
+
this_h, this_w = int(this_hw**0.5), int(this_hw**0.5)
|
267 |
+
|
268 |
+
cos = self.freqs_hw_cos[0 : this_h, 0 : this_w]
|
269 |
+
sin = self.freqs_hw_sin[0 : this_h, 0 : this_w]
|
270 |
+
|
271 |
+
cos = cos.clone().reshape(this_h * this_w, -1)
|
272 |
+
sin = sin.clone().reshape(this_h * this_w, -1)
|
273 |
+
|
274 |
+
# append N of zero-attn tokens
|
275 |
+
if extend_with_register_tokens > 0:
|
276 |
+
cos = torch.cat(
|
277 |
+
[
|
278 |
+
torch.ones(extend_with_register_tokens, cos.shape[1]).to(cos.device),
|
279 |
+
cos,
|
280 |
+
],
|
281 |
+
0,
|
282 |
+
)
|
283 |
+
sin = torch.cat(
|
284 |
+
[
|
285 |
+
torch.zeros(extend_with_register_tokens, sin.shape[1]).to(sin.device),
|
286 |
+
sin,
|
287 |
+
],
|
288 |
+
0,
|
289 |
+
)
|
290 |
+
|
291 |
+
return cos[None, None, :, :], sin[None, None, :, :] # [1, 1, T + N, Attn-dim]
|
292 |
+
|
293 |
+
|
294 |
+
def apply_rotary_emb(x, cos, sin):
|
295 |
+
orig_dtype = x.dtype
|
296 |
+
x = x.to(dtype=torch.float32)
|
297 |
+
assert x.ndim == 4 # multihead attention
|
298 |
+
d = x.shape[3] // 2
|
299 |
+
x1 = x[..., :d]
|
300 |
+
x2 = x[..., d:]
|
301 |
+
y1 = x1 * cos + x2 * sin
|
302 |
+
y2 = x1 * (-sin) + x2 * cos
|
303 |
+
return torch.cat([y1, y2], 3).to(dtype=orig_dtype)
|
304 |
+
|
305 |
+
|
306 |
+
class DiT(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin): # type: ignore[misc]
|
307 |
+
@register_to_config
|
308 |
+
def __init__(
|
309 |
+
self,
|
310 |
+
in_channels=4,
|
311 |
+
patch_size=2,
|
312 |
+
hidden_size=1152,
|
313 |
+
depth=28,
|
314 |
+
num_heads=16,
|
315 |
+
mlp_ratio=4.0,
|
316 |
+
cross_attn_input_size=128,
|
317 |
+
residual_v=False,
|
318 |
+
train_bias_and_rms=True,
|
319 |
+
use_rope=True,
|
320 |
+
gradient_checkpoint=False,
|
321 |
+
dynamic_softmax_temperature=False,
|
322 |
+
rope_base=10000,
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
|
326 |
+
self.patch_embed = PatchEmbed(patch_size, in_channels, hidden_size)
|
327 |
+
|
328 |
+
if use_rope:
|
329 |
+
self.rope = TwoDimRotary(hidden_size // (2 * num_heads), base=rope_base, h=512, w=512)
|
330 |
+
else:
|
331 |
+
self.positional_embedding = nn.Parameter(torch.zeros(1, 2048, hidden_size))
|
332 |
+
|
333 |
+
self.register_tokens = nn.Parameter(torch.randn(1, 16, hidden_size))
|
334 |
+
|
335 |
+
self.time_embed = nn.Sequential(
|
336 |
+
nn.Linear(hidden_size, 4 * hidden_size),
|
337 |
+
nn.SiLU(),
|
338 |
+
nn.Linear(4 * hidden_size, hidden_size),
|
339 |
+
)
|
340 |
+
|
341 |
+
self.blocks = nn.ModuleList(
|
342 |
+
[
|
343 |
+
DiTBlock(
|
344 |
+
hidden_size=hidden_size,
|
345 |
+
num_heads=num_heads,
|
346 |
+
mlp_ratio=mlp_ratio,
|
347 |
+
cross_attn_input_size=cross_attn_input_size,
|
348 |
+
residual_v=residual_v,
|
349 |
+
qkv_bias=train_bias_and_rms,
|
350 |
+
dynamic_softmax_temperature=dynamic_softmax_temperature,
|
351 |
+
)
|
352 |
+
for _ in range(depth)
|
353 |
+
]
|
354 |
+
)
|
355 |
+
|
356 |
+
self.final_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
357 |
+
|
358 |
+
self.final_norm = RMSNorm(hidden_size, trainable=train_bias_and_rms)
|
359 |
+
self.final_proj = nn.Linear(hidden_size, patch_size * patch_size * in_channels)
|
360 |
+
nn.init.zeros_(self.final_modulation[-1].weight)
|
361 |
+
nn.init.zeros_(self.final_modulation[-1].bias)
|
362 |
+
nn.init.zeros_(self.final_proj.weight)
|
363 |
+
nn.init.zeros_(self.final_proj.bias)
|
364 |
+
self.paramstatus = {}
|
365 |
+
for n, p in self.named_parameters():
|
366 |
+
self.paramstatus[n] = {
|
367 |
+
"shape": p.shape,
|
368 |
+
"requires_grad": p.requires_grad,
|
369 |
+
}
|
370 |
+
|
371 |
+
def save_lora_weights(self, save_directory):
|
372 |
+
"""Save LoRA weights to a file"""
|
373 |
+
lora_state_dict = get_peft_model_state_dict(self)
|
374 |
+
torch.save(lora_state_dict, f"{save_directory}/lora_weights.pt")
|
375 |
+
|
376 |
+
def load_lora_weights(self, load_directory):
|
377 |
+
"""Load LoRA weights from a file"""
|
378 |
+
lora_state_dict = torch.load(f"{load_directory}/lora_weights.pt")
|
379 |
+
set_peft_model_state_dict(self, lora_state_dict)
|
380 |
+
|
381 |
+
@apply_forward_hook
|
382 |
+
def forward(self, x, context, timesteps):
|
383 |
+
b, c, h, w = x.shape
|
384 |
+
x = self.patch_embed(x) # b, T, d
|
385 |
+
|
386 |
+
x = torch.cat([self.register_tokens.repeat(b, 1, 1), x], 1) # b, T + N, d
|
387 |
+
|
388 |
+
if self.config.use_rope:
|
389 |
+
cos, sin = self.rope(
|
390 |
+
x,
|
391 |
+
extend_with_register_tokens=16,
|
392 |
+
height_width=(h // self.config.patch_size, w // self.config.patch_size),
|
393 |
+
)
|
394 |
+
else:
|
395 |
+
x = x + self.positional_embedding.repeat(b, 1, 1)[:, : x.shape[1], :]
|
396 |
+
cos, sin = None, None
|
397 |
+
|
398 |
+
t_emb = timestep_embedding(timesteps * 1000, self.config.hidden_size).to(x.device, dtype=x.dtype)
|
399 |
+
t_emb = self.time_embed(t_emb)
|
400 |
+
|
401 |
+
v_0 = None
|
402 |
+
|
403 |
+
for _idx, block in enumerate(self.blocks):
|
404 |
+
if self.config.gradient_checkpoint:
|
405 |
+
x, v = torch.utils.checkpoint.checkpoint(
|
406 |
+
block,
|
407 |
+
x,
|
408 |
+
context,
|
409 |
+
t_emb,
|
410 |
+
v_0,
|
411 |
+
(cos, sin),
|
412 |
+
use_reentrant=False,
|
413 |
+
)
|
414 |
+
else:
|
415 |
+
x, v = block(x, context, t_emb, v_0, (cos, sin))
|
416 |
+
if v_0 is None:
|
417 |
+
v_0 = v
|
418 |
+
|
419 |
+
x = x[:, 16:, :]
|
420 |
+
final_shift, final_scale = self.final_modulation(t_emb).chunk(2, dim=1)
|
421 |
+
x = self.final_norm(x)
|
422 |
+
x = x * (1 + final_scale[:, None, :]) + final_shift[:, None, :]
|
423 |
+
x = self.final_proj(x)
|
424 |
+
|
425 |
+
x = rearrange(
|
426 |
+
x,
|
427 |
+
"b (h w) (p1 p2 c) -> b c (h p1) (w p2)",
|
428 |
+
h=h // self.config.patch_size,
|
429 |
+
w=w // self.config.patch_size,
|
430 |
+
p1=self.config.patch_size,
|
431 |
+
p2=self.config.patch_size,
|
432 |
+
)
|
433 |
+
return x
|
434 |
+
|
435 |
+
|
436 |
+
if __name__ == "__main__":
|
437 |
+
model = DiT(
|
438 |
+
in_channels=4,
|
439 |
+
patch_size=2,
|
440 |
+
hidden_size=1152,
|
441 |
+
depth=28,
|
442 |
+
num_heads=16,
|
443 |
+
mlp_ratio=4.0,
|
444 |
+
cross_attn_input_size=128,
|
445 |
+
residual_v=False,
|
446 |
+
train_bias_and_rms=True,
|
447 |
+
use_rope=True,
|
448 |
+
).cuda()
|
449 |
+
print(
|
450 |
+
model(
|
451 |
+
torch.randn(1, 4, 64, 64).cuda(),
|
452 |
+
torch.randn(1, 37, 128).cuda(),
|
453 |
+
torch.tensor([1.0]).cuda(),
|
454 |
+
)
|
455 |
+
)
|