liuyashu002 commited on
Commit
15b04bf
·
1 Parent(s): ffa9921

readme update

Browse files
Files changed (1) hide show
  1. README.md +67 -1
README.md CHANGED
@@ -1,3 +1,69 @@
1
  ---
2
  license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ ---
4
+ We have open-sourced Flame-Waterfall-7B, a model built by connecting DeepSeek-Coder-7B-Instruct and the SigLIP vision encoder with a 2-layer MLP, and instruction-tuned on the Flame-Code-VLM/Flame-Waterfall-React dataset.
5
+ This model is released to showcase the value of the synthesized dataset. However, it is not intended for general-purpose tasks. Please use it with caution.
6
+
7
+
8
+ ### Generation
9
+
10
+ The following is the sample code for inference.
11
+
12
+ ```python
13
+
14
+ # pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
15
+ # Replace the corresponding code files in the original repository with those in https://github.com/Flame-Code-VLM/Flame-Code-VLM/tree/main/model
16
+ # export PYTHONPATH="/your_path_to_LLaVA-NeXT_repo:$PYTHONPATH"
17
+
18
+ from llava.model.builder import load_pretrained_model
19
+ from llava.mm_utils import process_images, tokenizer_image_token
20
+ from llava.constants import DEFAULT_IMAGE_TOKEN
21
+
22
+ from PIL import Image
23
+ import torch
24
+ import warnings
25
+
26
+ warnings.filterwarnings("ignore")
27
+
28
+ pretrained = "Flame-Code-VLM/flame_waterfall_7b"
29
+
30
+ model_name = "flame"
31
+ device = "cuda"
32
+ device_map = "auto"
33
+ llava_model_args = {
34
+ "multimodal": True,
35
+ "attn_implementation": None,
36
+ }
37
+ tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map,**llava_model_args)
38
+ model.config.tokenizer_padding_side = 'left' # Use left padding for batch processing
39
+ model.eval()
40
+
41
+ url = "path_to_your_screenshot_image_file"
42
+ image = Image.open(url)
43
+ image_tensor = process_images([image], image_processor, model.config)
44
+ image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
45
+
46
+ prompt = "Below is an image of the page to create. Generate React code and styles to replicate the design, including layout, typography, and styling. Format your response as follows:'// CSS\n[CSS/SCSS code]\n\n// [React Implementation (JS/TS/JSX/TSX)]\n[Component code]'.\n\n ### Input Image:\n{image}\n\n### Response:\n"
47
+
48
+ input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors='pt')
49
+ input_ids = input_ids.unsqueeze(0)
50
+ input_ids=input_ids.to(device)
51
+ image_sizes = [image.size]
52
+ modalities = ["image"]
53
+
54
+ cont = model.generate(
55
+ input_ids,
56
+ images=image_tensor,
57
+ image_sizes=image_sizes,
58
+ modalities=modalities, # Added this line with the modalities
59
+ do_sample=True,
60
+ num_beams=5,
61
+ temperature=0.1,
62
+ max_new_tokens=4096,
63
+ top_p=0.95,
64
+ repetition_penalty=1.05
65
+ )
66
+
67
+ text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
68
+
69
+ ```