File size: 1,644 Bytes
8a1b075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: mit
base_model:
- deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
pipeline_tag: text-generation
tags:
- OpenVINO
- Optimum-Intel
- OpenArc
---

My Project [OpenArc](https://github.com/SearchSavior/OpenArc), an inference engine for OpenVINO, now supports this model and serves inference over OpenAI compatible endpoints for text to text *and* text with vision!

We have a growing Discord community of others interested in using Intel for AI/ML. 

[![Discord](https://img.shields.io/discord/1341627368581628004?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FmaMY7QjG)](https://discord.gg/maMY7QjG)

- Find documentation on the Optimum-CLI export process [here](https://huggingface.co/docs/optimum/main/en/intel/openvino/export)
- Use my HF space [Echo9Zulu/Optimum-CLI-Tool_tool](https://huggingface.co/spaces/Echo9Zulu/Optimum-CLI-Tool_tool) to build commands and execute locally

---

## This repo contains OpenVINO quantizied versions of DeepSeek-R1-0528-Qwen3-8B.

I reccomend starting with **DeepSeek-R1-0528-Qwen3-8B-int4_asym-awq-se-ov**

To download individual models from this repo use the provided snippet:

```
from huggingface_hub import snapshot_download

repo_id = "Echo9Zulu/DeepSeek-R1-0528-Qwen3-8B-OpenVINO"     

# Choose the weights you want
repo_directory = "DeepSeek-R1-0528-Qwen3-8B

# Where you want to save it
local_dir = "./Echo9Zulu_DeepSeek-R1-0528-Qwen3-8B/DeepSeek-R1-0528-Qwen3-8B-int4_asym-awq-se-ov"

snapshot_download(
    repo_id=repo_id,
    allow_patterns=[f"{repo_directory}/*"], 
    local_dir=local_dir,
    local_dir_use_symlinks=True
) 

print("Download complete!")
```