File size: 32,697 Bytes
29a399e 83ee88b 29a399e 51d254e 29a399e 51d254e 29a399e 51d254e 29a399e 51d254e 29a399e 51d254e 29a399e 51d254e 29a399e 51d254e 29a399e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
from dataclasses import dataclass
from typing import Optional,Tuple,List
from collections import namedtuple
import math
import time
import json
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint
try:
from .configuration_dcformer import DCFormerConfig
except:
from configuration_dcformer import DCFormerConfig
from transformers.modeling_utils import PreTrainedModel
class KVKWCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, window_size=2048, dtype=torch.float16, use_kw_cache=True):
super().__init__()
self.head_dim = head_dim
self.kw_dim = 2 * n_heads
self.n_heads = n_heads
self.window_size = window_size
self.use_kw_cache = use_kw_cache
if window_size is None:
self.seq_length = max_seq_length
else:
self.seq_length = min(window_size, max_seq_length)
cache_shape = (max_batch_size, n_heads, self.seq_length, head_dim)
kw_cache_shape = (max_batch_size, self.seq_length, 2, n_heads, n_heads)
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
if self.use_kw_cache:
self.register_buffer('kw_cache', torch.zeros(kw_cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val, kw_val=None): # kw_val B,N,S,2,N B2NSD
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[-1] == k_val.shape[2]
B,N,S,D = v_val.shape
k_out = self.k_cache
v_out = self.v_cache
if self.use_kw_cache:
kw_out = self.kw_cache
else:
kw_out = None
if self.window_size is None:
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
if self.use_kw_cache and kw_val is not None:
kw_out[:,input_pos] = kw_val
elif S == 1:
input_pos = input_pos % self.seq_length
v_out[:, :, input_pos] = v_val
k_out[:, :, input_pos] = k_val
if self.use_kw_cache and kw_val is not None:
kw_out[:,input_pos] = kw_val
else: # prefill
start = max(0, input_pos[-1]-self.seq_length+1)
input_pos = input_pos[start:] % self.seq_length
v_out[:, :, input_pos] = v_val[:,:,start:]
k_out[:, :, input_pos] = k_val[:,:,start:]
if self.use_kw_cache and kw_val is not None:
kw_out[:, input_pos] = kw_val[:,start:]
return k_out, v_out, kw_out
class DCFormer(PreTrainedModel):
config_class=DCFormerConfig
'''
DCFormer's implementation is adapted from https://github.com/pytorch-labs/gpt-fast/blob/main/model.py#L89
'''
def __init__(self, config: DCFormerConfig) -> None:
super().__init__(config)
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.layers = nn.ModuleList(DCFormerBlock(config, lidx) for lidx in range(config.n_layer))
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
self.use_gradient_checkpointing = config.use_gradient_checkpointing
self.is_training = config.is_training
self.freqs_cis: Optional[Tensor] = None
self.mask_cache: Optional[Tensor] = None
self.window_size = config.window_size
self.max_batch_size = -1
self.max_seq_length = -1
def setup_caches(self, max_batch_size, max_seq_length, set_kv_cache=True):
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
if not self.is_training:
for b in self.layers:
if set_kv_cache:
use_kw_cache = False if b.attention.query_wise else True
b.attention.kv_cache = KVKWCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, window_size=b.attention.window_size, use_kw_cache=use_kw_cache)
b.attention.dyn_w_proj.merge_weights()
if not b.attention.use_sw:
dtype = b.attention.wo.weight.dtype
device = b.attention.wo.weight.device
b.attention.dyn_w_proj.sw = b.attention.dyn_w_proj.sw.to(device=device, dtype=dtype)
b.attention.dyn_w_proj.pre_proj.w = b.attention.dyn_w_proj.pre_proj.w.to(device=device, dtype=dtype)
b.attention.dyn_w_proj.post_proj.w = b.attention.dyn_w_proj.post_proj.w.to(device=device, dtype=dtype)
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.dim // self.config.n_head, self.config.rope_base).to(self.tok_embeddings.weight.device)
if self.is_training:
self.causal_mask = torch.tril(torch.ones(self.config.block_size, self.config.block_size, dtype=torch.bool, device=self.tok_embeddings.weight.device))
elif self.window_size is None:
self.causal_mask = torch.tril(torch.ones(max_seq_length, max_seq_length, dtype=torch.bool, device=self.tok_embeddings.weight.device))
else:
self.causal_mask = torch.stack([make_window_mask(max_seq_length, self.config.window_size), torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))]) # LG
def generate(self, input_ids, num_tokens_to_generate=10, compiled_decode_one_token=None):
batch_size, seq_length = input_ids.shape
input_pos = torch.arange(seq_length, device=self.device)
generated_ids = torch.zeros(batch_size, seq_length + num_tokens_to_generate, dtype=torch.int, device=self.device)
generated_ids[:, :seq_length] = input_ids.to(self.device).to(torch.int)
logits = self.forward(input_ids, input_pos=input_pos,return_tensor=True)
_next_token = torch.argmax(logits[:, -1], dim=-1)[:, None]
next_token = torch.zeros(self.max_batch_size, 1, device=self.device, dtype=torch.int)
next_token[:batch_size] = _next_token
generated_ids[:, seq_length] = next_token[:batch_size, 0]
input_pos = torch.tensor([seq_length], device=self.device)
for _ in range(1, num_tokens_to_generate):
if compiled_decode_one_token is not None:
next_token = compiled_decode_one_token(self, next_token.clone(), input_pos)
else:
next_token = self.decode_one_token(next_token.clone(), input_pos)
generated_ids[:, input_pos+1] = next_token.int()[:batch_size]
input_pos += 1
return generated_ids
def decode_one_token(self, cur_token, input_pos):
logits = self.forward(
cur_token,
input_pos=input_pos,
return_tensor=True
)
new_token = torch.argmax(logits[:, -1], dim=-1)[:,None]
return new_token
def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None, return_tensor=False) -> Tensor:
assert self.freqs_cis is not None, "Caches must be initialized first"
if input_pos is None:
input_pos = torch.arange(idx.shape[-1], device=idx.device, dtype=torch.int)
if self.window_size is None or self.is_training:
mask = self.causal_mask[None, None, input_pos]
else:
mask = self.causal_mask[None, None,:,input_pos]
freqs_cis = self.freqs_cis[input_pos][:idx.shape[-1]]
x = self.tok_embeddings(idx)
for i, layer in enumerate(self.layers):
if self.is_training or self.window_size is None :
layer_mask = mask
gen_mask = None
elif self.window_size is not None:
layer_mask = mask[:,:,1] if layer.attention.window_size is None else mask[:,:,0]
gen_mask = mask[:,:,1] if layer.attention.window_size is not None else None
if self.use_gradient_checkpointing:
x = checkpoint(layer, x, input_pos, freqs_cis, layer_mask)
else:
x = layer(x, input_pos, freqs_cis, layer_mask, gen_mask=gen_mask)
x = self.norm(x)
logits = self.output(x)
if return_tensor:
return logits
else:
CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
return CausalLMOutput(logits=logits)
class DCFormerBlock(nn.Module):
def __init__(self, config: DCFormerConfig, lidx) -> None:
super().__init__()
self.lidx = lidx
self.attention = DCMHAttention(config, lidx)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
def forward(self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor, gen_mask=None) -> Tensor:
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos, gen_mask=gen_mask, fast_infer=True)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class DynamicWeightProjection(nn.Module):
def __init__(self, num_heads=32, num_groups=1, residual=True, query_input_dim=4096, dynamic_squeeze_ratio=16, dynamic_w_hidden_dim=128,dtype=torch.float16,use_sw=False):
super().__init__()
self.num_heads = num_heads
self.num_groups = num_groups
self.query_input_dim = query_input_dim
self.dynamic_squeeze_ratio = dynamic_squeeze_ratio
self.dynamic_w_hidden_dim = dynamic_w_hidden_dim
self.dw_hidden_activation = nn.GELU()
self.num_heads_per_group = self.num_heads // self.num_groups
self.dw_activation = nn.Tanh()
self.dw1_norm = RMSnormNoscale(dim=-1)
self.use_sw = use_sw
self.pre_proj = CrossHeadProjection('pre', num_heads=self.num_heads, use_sw=use_sw)
self.post_proj = CrossHeadProjection('post', num_heads=self.num_heads, use_sw=use_sw)
dynamic_hidden_dim = self.num_heads_per_group // self.dynamic_squeeze_ratio
self.dynamic_hidden_dim = dynamic_hidden_dim
self.dw1 = nn.parameter.Parameter(torch.zeros(self.query_input_dim, self.num_groups, 4, self.dynamic_w_hidden_dim, dtype=dtype)) #(4096, 1, 4, 128)
G, K, M = self.num_groups, self.dynamic_w_hidden_dim, self.num_heads_per_group
I = dynamic_hidden_dim * 2
self.qkw = nn.parameter.Parameter(torch.zeros([G, 4, K, I, M], dtype=dtype)) # (1, 4, 128, 4, 32)
self.dd = nn.parameter.Parameter(torch.zeros(self.query_input_dim, self.num_groups, self.num_heads_per_group * 4, dtype=dtype)) # (4096, 1, 128)
self.merge_weights()
def merge_weights(self):
self.dw_m = nn.parameter.Parameter(torch.cat([self.dw1.reshape(self.query_input_dim, -1), self.dd.squeeze(1)], dim=-1)).to(self.dw1.device) # E,(4*K + K) K=2*N*I
self.qkw_m = nn.parameter.Parameter(self.qkw.permute(0,1,2,3,4).reshape(4,self.dynamic_w_hidden_dim,-1)).to(self.dw1.device) #(4,K,I*M)
if self.use_sw:
self.sw = nn.parameter.Parameter(torch.stack([self.pre_proj.w, self.post_proj.w]).squeeze(1) + torch.eye(self.num_heads) ).to(self.dw1.device) # (2,N,N) sw + identity matrix
else:
self.sw = (torch.eye(self.num_heads).expand(2,self.num_heads,self.num_heads)).to(self.dw1.device) # identity matrix (2,N,N)
def forward(self,query_vec,KW:Optional[torch.Tensor]=None, gen_cache:Optional[bool]=True):
dw_hidden = torch.einsum('BTD,DGCK->BTGCK', query_vec, self.dw1) # C=4 [pre,post]*[query,key]
dw_hidden = self.dw_hidden_activation(dw_hidden) #BTGCK
w1, w2 = torch.split(torch.einsum('BTGCK,GCKIM->BTGCIM', dw_hidden, self.qkw), self.qkw.shape[-2]//2, dim=-2) #BTGC(2I)M -> [BTGCIM] * 2
w1 = self.dw1_norm(w1) # BTGCIM
pre_qw1, pre_kw1, post_qw1, post_kw1 = unbind(w1, 4, dim=3) # BTG4IM->[BTGIM]*4
pre_qw2, pre_kw2, post_qw2, post_kw2 = unbind(w2, 4, dim=3)
dd = torch.einsum('BTD,DGM->BTGM', query_vec, self.dd) # BTG(4M)
dd = self.dw_activation(dd)
pre_qdd, pre_kdd, post_qdd, post_kdd = torch.split(dd, dd.shape[-1] // 4, dim=-1) # BTG(4N)->[BTGN]*4
pre_dw_args = (pre_qw1, pre_qw2, pre_kw1, pre_kw2, pre_qdd, pre_kdd)
post_dw_args = (post_qw1, post_qw2, post_kw1, post_kw2, post_qdd, post_kdd)
if gen_cache: # generate KW cache
pre_kw = torch.einsum('BSGIM, BSGIN->BSMN', pre_kw1, pre_kw2) + torch.diag_embed(pre_kdd.squeeze(2)) # merge kw and kdd
post_kw = torch.einsum('BSGIM, BSGIN->BSMN', post_kw1, post_kw2) + torch.diag_embed(post_kdd.squeeze(2))
KW = torch.stack((pre_kw, post_kw), dim=-3) # BSMN,BSMN->BS2MN
return pre_dw_args, post_dw_args, KW
class RMSnormNoscale(nn.Module):
def __init__(self, epsilon=1e-6, dim=-1):
super().__init__()
self.dim = dim
self.epsilon = epsilon
def forward(self, inputs):
var = inputs.pow(2).mean(dim=self.dim, keepdim=True)
normed_inputs = inputs * torch.rsqrt(var + self.epsilon)
return normed_inputs
class RMSnorm(nn.Module):
def __init__(self, hid_dim=128, epsilon=1e-6, dim=-1):
super().__init__()
self.dim = dim
self.hid_dim = hid_dim
self.epsilon = epsilon
self.scale = nn.parameter.Parameter(data=torch.ones(self.hid_dim))
def forward(self, inputs):
var = inputs.pow(2).mean(dim=self.dim, keepdim=True)
normed_inputs = inputs * torch.rsqrt(var + self.epsilon)
normed_inputs = normed_inputs * self.scale
return normed_inputs
class CrossHeadProjection(nn.Module):
def __init__(self, mode, num_heads=16, num_groups=1, dtype=torch.float16, use_sw=False):
super().__init__()
self.mode = mode
self.use_sw = use_sw
self.num_heads = num_heads
self.num_groups = num_groups
self.num_heads_per_group = self.num_heads // self.num_groups
if self.use_sw:
self.w = nn.parameter.Parameter(data=torch.zeros(self.num_groups, self.num_heads_per_group, self.num_heads_per_group, dtype=dtype))
else:
self.register_buffer('w', torch.eye(self.num_heads_per_group, dtype=dtype).expand(self.num_groups, self.num_heads_per_group, self.num_heads_per_group))
def forward(self, inputs,
dws:Optional[Tuple[Tensor,Tensor, Tensor,Tensor, Tensor,Tensor]]=None,
query_vec=None, key_vec=None,
proj_w:Optional[Tensor]=None,
fast_infer=True):
if proj_w is not None:
ret = torch.einsum('BNTS,BSNM->BMTS', inputs, proj_w)
else:
assert dws is not None
qw1, qw2, kw1, kw2, qdd, kdd = dws
inputs = inputs.unsqueeze(1) #BNTS->BGNTS
# apply sw
ret = torch.einsum('BGMTS,GMN->BGNTS', inputs, self.w) if self.use_sw else inputs
if fast_infer:
inputs_label = 'BGMTS'
hidden_sym = 'I'; hidden_label = inputs_label.replace('M', 'I') # BGITS
# apply qw and kw
for sym, (w1, w2) in zip(['T', 'S'], [(qw1, qw2), (kw1, kw2)]):
dw_label = f'B{sym}G{hidden_sym}M' # w1: BTGIM, dw_label:BTGIM
dynamic_hidden_dim = w1.shape[dw_label.index(hidden_sym)]
eqn1 = f'{inputs_label},{dw_label}->{hidden_label}' # 'BGMTS,BTGMI->BGITS'
eqn2 = f'{hidden_label},{dw_label}->{inputs_label}' # 'BGITS,BTGMI->BGMTS'
for i in range(dynamic_hidden_dim):
hidden = torch.einsum(eqn1.replace(hidden_sym, ''), inputs, w1[..., i, :]) # BGMTS,BTG(I)M->BGTS
out = torch.einsum(eqn2.replace(hidden_sym, ''), hidden, w2[..., i, :]) # 'BG(I)TS,BTG(I)M->BGMTS'
ret = ret + out
# apply qdd and kdd
for sym, dd in zip(['T', 'S'], [qdd, kdd]):
dd_label = f'B{sym}GM'
dout = torch.einsum(f'{inputs_label},{dd_label}->{inputs_label}', inputs, dd) # BGMTS,B(T/S)GM->BGMTS
ret = ret + dout
else:
# apply qw and kw (BTGIN)
x_inter = torch.einsum('BGNTS, BTGIN->BGTSI', inputs, qw1)
qw_out = torch.einsum('BGTSI, BTGIN->BGNTS', x_inter, qw2)
ret = ret + qw_out
x_inter = torch.einsum('BGNTS, BSGIN->BGTSI', inputs, kw1)
kw_out = torch.einsum('BGTSI, BSGIN->BGNTS', x_inter, kw2)
ret = ret + kw_out
# apply qdd(BTGN) and kdd(BSGN)
ret = ret + torch.einsum('BGNTS, BTGN->BGNTS', inputs, qdd)
ret = ret + torch.einsum('BGNTS, BSGN->BGNTS', inputs, kdd)
ret = ret.squeeze(1) # BGNTS->BNTS
return ret
class DCMHAttention(nn.Module):
def __init__(self, config: DCFormerConfig, lidx, use_sw=False):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
self.lidx = lidx
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.kv_cache = None
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.is_training = config.is_training
self.dim = config.dim
self.use_dcmha = config.use_dcmha
self.scale_factor = 1 / math.sqrt(self.head_dim)
self.q_chunk_size = config.q_chunk_size
self.use_sw = use_sw
self.dyn_w_proj = DynamicWeightProjection(num_heads=self.n_head, query_input_dim=config.dim, dynamic_squeeze_ratio=self.n_head//2, dynamic_w_hidden_dim=self.n_head*4, use_sw=use_sw)
self.use_qk_norm = config.use_qk_norm
if self.use_qk_norm:
self.q_norm = RMSnorm(hid_dim=self.head_dim)
self.k_norm = RMSnorm(hid_dim=self.head_dim)
self.window_types = {
"LG":[256, None],
"LGLL":[256, None, 256, 256],
"LGL6":[256, None, 256, 256, 256, 256, 256, 256],
}
self.query_wise = config.query_wise
if config.window_type is None: # LG
self.window_size = None if self.lidx % 2 == 1 else config.window_size
else:
window_l = self.window_types[config.window_type]
self.window_size = window_l[self.lidx % len(window_l)]
if not self.is_training:
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def _generate_fast(self, x, input_pos, q, k, v, k_mask):
B,T,D = x.shape
N,I = self.n_head, self.dyn_w_proj.dynamic_hidden_dim # 32, 2
dw_hidden, dd = (x @ self.dyn_w_proj.dw_m).split([2*2*N*(2*I), 2*2*N*1], -1) # BTD, D(4K+4N) -> BT(4K+4N) -> BT(4K), BT(4N)
dw_hidden = dw_hidden.view((B,T,4,-1,1)) # BT(4K) -> BT4K1
dw = (self.dyn_w_proj.dw_hidden_activation(dw_hidden) * self.dyn_w_proj.qkw_m).sum(-2) # gelu, BT4K1, 4K(IM)->BT4K(IM)->BT4(IM)
w1, w2 = dw.view((B,T,2,2,-1,N)).split(I,-2) # BT4(IM)->BT{pre/post}{q/k}IM->[BT22IM] * 2
w1 = self.dyn_w_proj.dw1_norm(w1) # BT22IN
qkdd = self.dyn_w_proj.dw_activation(dd.view((B,T,2,2,N))) # BT2{2}N1->BT2{2}N tanh
qkw = torch.einsum('BTKJIN,BTKJIM->BTKJNM', w1, w2) + torch.diag_embed(qkdd) # j=k=2, BT2{2}NM q/k, pre/post
if self.query_wise: # TODO: do not generate kw and kdd
qw, _ = qkw.unbind(3) # BS2NM
kw_new = None
qw = qw + self.dyn_w_proj.sw
else:
qw, kw_new = qkw.unbind(3) # BS{pre/post}{q/k}NM -> BS{pre/post}NM * 2
kw_new = kw_new + self.dyn_w_proj.sw # BS2NM + 2NM-> BS2NM
if self.kv_cache is not None:
k, v, kw_out = self.kv_cache.update(input_pos, k, v, kw_val=kw_new) #BNT2M
logits = q @ k.transpose(-2, -1) * self.scale_factor
if self.query_wise:
w = qw # B12NM
else:
w = qw + kw_out # B12NM,BS2NM -> BS2NM
wl, w = w.permute(0,2,3,4,1).unbind(1) # BS2NM->B2NMS->[BNMS]*2
logits = (logits * wl).sum(1).unsqueeze(2) # BN1S, BNMS -> BNMS-> BMS-> BM1S
min_value = torch.finfo(torch.float16).min
logits = torch.where(k_mask, logits, min_value)
probs = logits.softmax(-1)
probs = (probs * w).sum(1).unsqueeze(2)
y = probs @ v
return y
def forward(self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None, fast_infer=True, gen_mask=None) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim) # BSND
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
if self.use_qk_norm:
q, k = self.q_norm(q), self.k_norm(k)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) # BNSD
if self.is_training:
N, D, I = self.n_head, self.head_dim, self.dyn_w_proj.dynamic_hidden_dim; # 6.7B
B,T,E = x.shape
if self.use_dcmha:
project_logits = True
project_probs = True
if project_probs:
dw_hidden, dd = (x @ self.dyn_w_proj.dw_m).split([2*2*N*(2*I), 2*2*N*1], -1)
dw_hidden = self.dyn_w_proj.dw_hidden_activation(dw_hidden)
dw_hidden = dw_hidden.view(dw_hidden.shape[:2]+(4,-1)) #B T (4 K) -> B T 4 K # reshape
dw = torch.einsum('B T C K, C K D -> B T C D', dw_hidden, self.dyn_w_proj.qkw_m) # BT4K,4K(MI)->BT4(MI)
shape = (B,T,2*2,-1,N)# if project_logits else (B,T,2,N,-1) # BT(pre/post)(q/k)IN
w1, w2 = dw.view(shape).split(I,-2)
w1 = self.dyn_w_proj.dw1_norm(w1) # BT22IN
if self.use_sw:
pre_sw, post_sw = self.dyn_w_proj.sw.unbind(0)
else:
pre_sw, post_sw = None, None
pre_qw1, pre_kw1, post_qw1, post_kw1 = w1.unbind(2) # BT(2{*2})IN->[BTIN]*4
pre_qw2, pre_kw2, post_qw2, post_kw2 = w2.unbind(2)
qkdd = F.tanh(dd).squeeze(-1).view(shape[:-2] + (N,)) # BT(2{*2})N1->BT(2{*2})N
pre_qdd, pre_kdd, post_qdd, post_kdd = qkdd.unbind(2) # BT(2{*2})N->[BTN]*4
y = torch.zeros(B, N, T, D).to(q.device, dtype=torch.float16)
for i in range(T // self.q_chunk_size):
start, stop = i * self.q_chunk_size, (i + 1) * self.q_chunk_size
kv_start = max(0, stop - self.q_chunk_size -self.window_size)
_q = q[:, :, start : stop, :]
_k, _v = k[:, :, kv_start : stop, :], v[:, :, kv_start : stop, :]
_atten_mask = mask[:, :, start : stop, kv_start : stop]
_pre_proj_dw_args = slice_dw(pre_sw, pre_qw1, pre_qw2, pre_kw1, pre_kw2, pre_qdd, pre_kdd, start, stop, kv_start) \
if project_logits else None
_post_proj_dw_args = slice_dw(post_sw, post_qw1, post_qw2, post_kw1, post_kw2, post_qdd, post_kdd, start,stop,kv_start) \
if project_probs else None
_o = _atten_context(_q, _k, _v, _atten_mask, _pre_proj_dw_args, _post_proj_dw_args)
y[:,:,start:stop] = _o
else:
y = torch.zeros(B, N, T, D).to(q.device, dtype=torch.float16)
for i in range(T // self.q_chunk_size):
start, stop = i * self.q_chunk_size, (i + 1) * self.q_chunk_size
kv_start = max(0, stop - self.q_chunk_size -self.window_size)
_q = q[:, :, start : stop, :]
_k, _v = k[:, :, kv_start : stop, :], v[:, :, kv_start : stop, :]
_atten_mask = mask[:, :, start : stop, kv_start : stop]
_pre_proj_dw_args, _post_proj_dw_args = None, None
_o = _atten_context(_q, _k, _v, _atten_mask, _pre_proj_dw_args, _post_proj_dw_args)
y[:,:,start:stop] = _o
else: # inference
if seqlen == 1: # one-token generation
k_mask = mask if self.window_size is None else gen_mask[:, :, :,:self.kv_cache.seq_length]
if fast_infer:
y = self._generate_fast(x, input_pos, q, k, v, k_mask)
else:
assert not self.query_wise
# generate dw from hidden_state
pre_proj_dw_args, post_proj_dw_args, kw_new = self.dyn_w_proj(x, gen_cache=True)
# update kvkw cache
kw_new = kw_new + self.dyn_w_proj.sw # absorb residual or sw into kw cache
if self.kv_cache is not None:
k, v, kw_out = self.kv_cache.update(input_pos, k, v, kw_val=kw_new) # BNSD, BNSD, BS2NN
logits = q @ k.transpose(-2, -1) * self.scale_factor
# merge pre_w and apply it
pre_qw1, pre_qw2, pre_kw1, pre_kw2, pre_qdd, pre_kdd = pre_proj_dw_args
pre_qw = torch.einsum('BTGIN, BTGIM->BTNM',pre_qw1, pre_qw2) + torch.diag_embed(pre_qdd.squeeze(2))
pre_w = pre_qw + kw_out[:,:,0] # B1NM, BSNM -> BSNM
logits = self.dyn_w_proj.pre_proj(logits, proj_w=pre_w.squeeze(1))
logits = torch.where(k_mask, logits, torch.finfo(torch.float16).min)
probs = logits.softmax(-1)
# merge post_w and apply it
post_qw1, post_qw2, post_kw1, post_kw2, post_qdd, post_kdd = post_proj_dw_args
post_qw = torch.einsum('BTGIN, BTGIM->BTNM', post_qw1, post_qw2) + torch.diag_embed(post_qdd.squeeze(2))
post_w = post_qw + kw_out[:,:,1]
probs = self.dyn_w_proj.post_proj(probs, proj_w=post_w.squeeze(1))
y = probs @ v
else: # prefill
k_mask = mask[:,:,:,:k.shape[-2]]
pre_proj_dw_args, post_proj_dw_args,kw_new = self.dyn_w_proj(x, gen_cache=True)
kw_new = kw_new + self.dyn_w_proj.sw # absorb residual or sw into kw cache
if self.kv_cache is not None:
self.kv_cache.update(input_pos, k, v, kw_val=kw_new) # BNSD, BNSD, BS2NN
logits = q @ k.transpose(-2, -1) * self.scale_factor
logits = self.dyn_w_proj.pre_proj(logits, dws=pre_proj_dw_args, query_vec=x, key_vec=x, fast_infer=True) # XD BN1S
logits = torch.where(k_mask, logits, torch.finfo(torch.float16).min)
probs = logits.softmax(-1)
probs = self.dyn_w_proj.post_proj(probs, dws=post_proj_dw_args, query_vec=x, key_vec=x, fast_infer=True) # BN1S
y = probs @ v
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
y = self.wo(y)
return y
class FeedForward(nn.Module):
def __init__(self, config: DCFormerConfig) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def _atten_context(query, key, value, atten_mask, pre_proj_dw_args, post_proj_dw_args):
logits = query @ key.transpose(-2, -1)
if pre_proj_dw_args is not None: logits = _cross_head_proj(logits, *pre_proj_dw_args)
logits = torch.where(atten_mask, logits, torch.finfo(torch.float16).min)
probs = logits.softmax(-1)
if post_proj_dw_args is not None: probs = _cross_head_proj(probs, *post_proj_dw_args)
o = probs @ value # BNTS,BNSD->BNTD
return o
def _cross_head_proj(inputs, sw, qw1, qw2, kw1, kw2, qdd, kdd, loop_over_dynamic_hd=False):
out = inputs + torch.einsum('BNTS,NM->BMTS', inputs, sw) if sw is not None else inputs
for i in range(2): # qw1.shape[-2]):
qhidden = (inputs * qw1[..., i, :].transpose(-2, -1).unsqueeze(-1)).sum(1) # BNTS,(BTN->BNT->BNT1)->BNTS->BTS
qout = qhidden.unsqueeze(1) * qw2[..., i, :].transpose(-2, -1).unsqueeze(-1) # (BTS->B1TS),(BTN->BNT->BNT1)->BNTS
out = out + qout
khidden = (inputs * kw1[..., i, :].transpose(-2, -1).unsqueeze(-2)).sum(1) # BNTS,(BSN->BNS->BN1S)->BNTS->BTS
kout = khidden.unsqueeze(1) * kw2[..., i, :].transpose(-2, -1).unsqueeze(-2) # (BTS->B1TS),(BSN->BNS->BNS1)->BNTS
out = out + kout
qdout = inputs * qdd.transpose(-2, -1).unsqueeze(-1); out = out + qdout # BNTS,(BTN->BNT->BNT1)->BNTS
kdout = inputs * kdd.transpose(-2, -1).unsqueeze(-2); out = out + kdout # BNTS,(BSN->BNS->BN1S)->BNTS
return out
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
def make_window_mask(t, window_size):
col_idx = torch.tile(torch.arange(t).unsqueeze(0), [t, 1])
row_idx = torch.tile(torch.arange(t).unsqueeze(1), [1, t])
bias_mask = (col_idx + window_size >= row_idx).tril().view(t, t)
return bias_mask
def slice_dw(sw, qw1, qw2, kw1, kw2, qdd, kdd, start, stop, kv_start):
return (sw,
qw1[:, start : stop] if qw1 is not None else None,
qw2[:, start : stop] if qw2 is not None else None,
kw1[:, kv_start : stop] if kw1 is not None else None,
kw2[:, kv_start : stop] if kw2 is not None else None,
qdd[:, start : stop] if qdd is not None else None,
kdd[:, kv_start : stop] if kdd is not None else None)
def precompute_freqs_cis(
seq_len: int, n_elem: int, base: int = 10000
) -> Tensor:
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=torch.float16)
def unbind(ary, n, dim=0):
return [torch.squeeze(a, dim=dim) for a in torch.split(ary, ary.shape[dim] // n, dim=dim)]
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor, mode='half') -> Tensor:
if mode == 'half':
xshaped = x.float().reshape(*x.shape[:-1], 2,-1).transpose(-1,-2)
elif mode == 'alternative':
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(-1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
|