--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-V2 results: [] --- # w2v-V2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1706 - Wer: 0.1496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.3589 | 0.1049 | 300 | 0.2921 | 0.2762 | | 0.3512 | 0.2099 | 600 | 0.2855 | 0.2767 | | 0.2998 | 0.3148 | 900 | 0.2872 | 0.2550 | | 0.3419 | 0.4197 | 1200 | 0.2641 | 0.2620 | | 0.2757 | 0.5247 | 1500 | 0.2633 | 0.2332 | | 0.2827 | 0.6296 | 1800 | 0.2473 | 0.2090 | | 0.265 | 0.7345 | 2100 | 0.2304 | 0.2226 | | 0.2985 | 0.8395 | 2400 | 0.2266 | 0.2109 | | 0.2555 | 0.9444 | 2700 | 0.2279 | 0.1891 | | 0.255 | 1.0493 | 3000 | 0.2129 | 0.1927 | | 0.2194 | 1.1542 | 3300 | 0.1991 | 0.1821 | | 0.172 | 1.2592 | 3600 | 0.1963 | 0.1710 | | 0.2018 | 1.3641 | 3900 | 0.1860 | 0.1724 | | 0.2098 | 1.4690 | 4200 | 0.1783 | 0.1717 | | 0.1996 | 1.5740 | 4500 | 0.1709 | 0.1563 | | 0.1926 | 1.6789 | 4800 | 0.1706 | 0.1496 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0