File size: 7,641 Bytes
8335d65
82e3c6a
 
 
f710ba9
 
 
 
 
 
9df842d
82e3c6a
 
 
 
 
 
 
 
 
 
f710ba9
 
 
 
 
 
 
9df842d
f710ba9
 
9df842d
f710ba9
 
9df842d
f710ba9
 
9df842d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e3c6a
f710ba9
 
 
82e3c6a
8335d65
 
 
25f7b09
82e3c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df842d
82e3c6a
 
 
 
 
906489d
82e3c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
9df842d
 
82e3c6a
 
8335d65
 
 
f710ba9
 
9df842d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8335d65
 
82e3c6a
 
 
 
 
 
 
 
8335d65
f710ba9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language: 
  - es
tags:
  - biomedical
  - clinical
  - EHR
  - spanish
  - drugs
  - medications
license: cc-by-4.0
metrics:
- precision
- recall
- f1
base_model:
- PlanTL-GOB-ES/bsc-bio-ehr-es

model-index:
- name: BSC-NLP4BIA/bsc-bio-ehr-es-drugtemist
  results:
    
    - task:
        type: token-classification
      dataset:
        name: DrugTEMIST-es
        type: DrugTEMIST-es
      metrics:
        - name: precision (micro)
          type: precision
          value: 0.917
        - name: recall (micro)
          type: recall
          value: 0.909
        - name: f1 (micro)
          type: f1
          value: 0.913
    - task:
        type: token-classification
      dataset:
        name: CARMEN-I-medications
        type: CARMEN-I-medications
      metrics:
        - name: precision (micro)
          type: precision
          value: 0.906
        - name: recall (micro)
          type: recall
          value: 0.885
        - name: f1 (micro)
          type: f1
          value: 0.895
widget:
  - text: El diagnóstico definitivo de nuestro paciente fue de un Adenocarcinoma de pulmón cT2a cN3 cM1a Estadio IV (por una única lesión pulmonar contralateral) PD-L1 90%, EGFR negativo, ALK negativo y ROS-1 negativo.
  - text: Durante el ingreso se realiza una TC, observándose un nódulo pulmonar en el LII y una masa renal derecha indeterminada. Se realiza punción biopsia del nódulo pulmonar, con hallazgos altamente sospechosos de carcinoma.
  - text: Trombosis paraneoplásica con sospecha de hepatocarcinoma por imagen, sobre hígado cirrótico, en paciente con índice Child-Pugh B.

---


# bsc-bio-ehr-es-drugtemist

## Table of contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Additional information](#additional-information)
  - [Authors](#authors)
  - [Contact information](#contact-information)
  - [Funding](#funding)
  - [Citing information](#citing-information)
  - [Disclaimer](#disclaimer)
  
</details>

## Model description
A fine-tuned version of the [bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) model on the [DrugTEMIST](https://zenodo.org/records/11368861) corpus (original Spanish Gold Standard). For further information, check the [official website](https://temu.bsc.es/multicardioner/)

## How to use

⚠ We recommend pre-tokenizing the input text into words instead of providing it directly to the model, as this is how the model was trained. Otherwise, the results and performance might get affected.

A usage example can be found [here](https://github.com/nlp4bia-bsc/hugging-face-pipeline/blob/main/simple_inference.py).

## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. 


## Additional information

### Authors
NLP4BIA team at the Barcelona Supercomputing Center (nlp4bia@bsc.es).

### Contact information
jan.rodriguez [at] bsc.es

### Funding

This project was partially funded by the Spanish Plan for the Advancement of Language Technology (Plan TL) in collaboration with the Barcelona Supercomputing Center (BSC) and the Hospital Clinic de Barcelona (HCB). On the BSC's side, we acknowledge additional funding by the Spanish National AI4ProfHealth project (PID2020-119266RA-I00 MICIU/AEI/10.13039/501100011033) and EU Horizon projects (AI4HF 101080430 and DataTools4Heart 101057849). On the HCB's side, the project was also supported by the Instituto de Salud Carlos III (ISCIII).

### Citing information

Please cite the following works:

```bibtex

@article{LimaLopez2025,
  author       = {Salvador Lima-López and Eulàlia Farré-Maduell and Luis Gasco and Jan Rodríguez-Miret and Santiago Frid and Xavier Pastor and Xavier Borrat and Martin Krallinger},
  title        = {A textual dataset of de-identified health records in Spanish and Catalan for medical entity recognition and anonymization},
  journal      = {Scientific Data},
  volume       = {12},
  pages        = {Article 1088},
  year         = {2025},
  publisher    = {Nature Publishing Group},
  doi          = {10.1038/s41597-025-05320-1},
  url          = {https://www.nature.com/articles/s41597-025-05320-1}
}

@misc{carmen_physionet,
  author = {Farre Maduell, Eulalia and Lima-Lopez, Salvador and Frid, Santiago Andres and Conesa, Artur and Asensio, Elisa and Lopez-Rueda, Antonio and Arino, Helena and Calvo, Elena and Bertran, Maria Jesús and Marcos, Maria Angeles and Nofre Maiz, Montserrat and Tañá Velasco, Laura and Marti, Antonia and Farreres, Ricardo and Pastor, Xavier and Borrat Frigola, Xavier and Krallinger, Martin},
  title = {{CARMEN-I: A resource of anonymized electronic health records in Spanish and Catalan for training and testing NLP tools (version 1.0.1)}},
  year = {2024},
  publisher = {PhysioNet},
  url = {https://doi.org/10.13026/x7ed-9r91}
},

@inproceedings{multicardioner2024overview,
  title = {{Overview of MultiCardioNER task at BioASQ 2024 on Medical Speciality and Language Adaptation of Clinical NER Systems for Spanish, English and Italian}},
  author = {Salvador Lima-L\'opez and Eul\`alia Farr\'e-Maduell and Jan Rodr\'iguez-Miret and Miguel Rodr\'iguez-Ortega and Livia Lilli and Jacopo Lenkowicz and Giovanna Ceroni and Jonathan Kossoff and Anoop Shah and Anastasios Nentidis and Anastasia Krithara and Georgios Katsimpras and Georgios Paliouras and Martin Krallinger},
  booktitle = {CLEF Working Notes},
  year = {2024},
  editor = {Faggioli, Guglielmo and Ferro, Nicola and Galušč\'akov\'a, Petra and Garc\'ia Seco de Herrera, Alba}
}

@article{physionet,
  author = {Ary L. Goldberger  and Luis A. N. Amaral  and Leon Glass  and Jeffrey M. Hausdorff  and Plamen Ch. Ivanov  and Roger G. Mark  and Joseph E. Mietus  and George B. Moody  and Chung-Kang Peng  and H. Eugene Stanley },
  title = {PhysioBank, PhysioToolkit, and PhysioNet  },
  journal = {Circulation},
  volume = {101},
  number = {23},
  pages = {e215-e220},
  year = {2000},
  doi = {10.1161/01.CIR.101.23.e215},
  URL = {https://www.ahajournals.org/doi/abs/10.1161/01.CIR.101.23.e215}
}
```

### Disclaimer

The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.

When third parties deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.

---
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.

Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.