AnoushkaJain3 commited on
Commit
2a6efbd
Β·
verified Β·
1 Parent(s): 4f2be78

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -9,4 +9,74 @@ tags:
9
  - spikeinterface
10
  ---
11
 
 
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - spikeinterface
10
  ---
11
 
12
+ # 🧠 UnitRefine Mice SUA Classifier
13
 
14
+ ## πŸ“Œ Model Summary
15
+
16
+ This model is part of the **UnitRefine** pipeline and is trained to classify **single-unit activity (SUA)** in **mouse Neuropixels recordings**. It uses supervised machine learning to distinguish well-isolated units from multi-unit activity (MUA) and noise based on unit-level spike metrics.
17
+
18
+ The classifier is designed for **fast, automated unit curation**, and generalizes across **multiple recordings and brain regions**, achieving high accuracy even with limited training data.
19
+
20
+ The training data includes recordings from the **Allen Institute for Neural Dynamics**, **International Brain Laboratory**, and **Musall Lab**.
21
+
22
+ ---
23
+
24
+ ## πŸ” Use Cases
25
+
26
+ - Automated post-processing of spike sorting output
27
+ - Removing low-quality or noisy units prior to analysis
28
+ - Reducing manual curation effort in large-scale neural recordings
29
+ - Benchmarking unit quality metrics against expert annotations
30
+
31
+ ---
32
+
33
+ ## 🧬 Metric Selection
34
+
35
+ For information on which spike metrics were used to train this classifier, please refer to the `model_info.json` file included in the repository.
36
+
37
+ ---
38
+
39
+ ## πŸ’‘ How to Use
40
+
41
+ This model can be used to **automatically identify SUA units** from spike-sorted data. If you are working with a `SortingAnalyzer` object, you can run the following:
42
+
43
+ ```python
44
+ from spikeinterface.curation import auto_label_units
45
+
46
+ labels = auto_label_units(
47
+ sorting_analyzer=sorting_analyzer,
48
+ repo_id="AnoushkaJain3/UnitRefine-mice-sua-classifier",
49
+ trusted=["numpy.dtype"]
50
+ )
51
+ ```
52
+ This returns a dictionary of predicted labels per unit (1 = SUA, 0 = MUA/Noise).
53
+
54
+
55
+ ## πŸ“œ Citation
56
+
57
+ If you find [UnitRefine](https://github.com/anoushkajain/UnitRefine) models useful in your research, please cite:
58
+ **[biorxiv paper](https://www.biorxiv.org/content/10.1101/2025.03.30.645770v1.full.pdf)**.
59
+
60
+
61
+ ## πŸ”— Resources
62
+
63
+ - **GitHub Repository:** [UnitRefine](https://github.com/anoushkajain/UnitRefine)
64
+ - πŸ“– **SpikeInterface Tutorial – Automated Curation:**
65
+ [View Here](https://spikeinterface.readthedocs.io/en/latest/tutorials_custom_index.html#automated-curation-tutorials)
66
+
67
+ UnitRefine is **fully integrated with SpikeInterface**, making it easy to incorporate into existing workflows. πŸš€
68
+
69
+
70
+ ## πŸ™ Acknowledgments
71
+
72
+ Special thanks to **Alessio Buccino**, **Olivier Winter**, and **Alejandro Pan-Vazquez** for generously providing the datasets used to train and evaluate this model.
73
+
74
+ ---
75
+
76
+ ## πŸ‘©β€πŸ”¬ Authors
77
+
78
+ **Anoushka Jain**
79
+ PhD Researcher, Musall Lab, Forschungszentrum JΓΌlich
80
+
81
+ **Chris Halcrow**
82
+ Lead Developer, SpikeInterface