AmoooEBI commited on
Commit
7ae1336
·
verified ·
1 Parent(s): c446105

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -111
README.md CHANGED
@@ -1,199 +1,209 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
 
77
 
78
- ### Training Data
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
81
 
82
- [More Information Needed]
 
 
83
 
84
- ### Training Procedure
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
87
 
88
- #### Preprocessing [optional]
 
 
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
 
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
124
 
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
 
132
 
 
133
 
 
 
 
 
134
 
135
- ## Model Examination [optional]
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - SajjadAyoubi/persian_qa
5
+ language: fa
6
+ metrics:
7
+ - f1
8
+ - exact_match
9
+ base_model: pedramyazdipoor/persian_xlm_roberta_large
10
+ pipeline_tag: question-answering
11
  ---
12
 
13
+ # Model Card for AmoooEBI/xlm-roberta-fa-qa-finetuned-on-PersianQA
 
 
14
 
15
+ This model is a version of `pedramyazdipoor/persian_xlm_roberta_large`, fine-tuned with LoRA for extractive question answering on the Persian language using the PersianQA dataset.
16
 
17
+ ---
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
+ This is an XLM-RoBERTa model fine-tuned on the `SajjadAyoubi/persian_qa` dataset for extractive question answering in Persian. The model was trained using the parameter-efficient LoRA method, which significantly speeds up training while achieving high performance. It is designed to extract an answer to a question directly from a given context. The fine-tuning process has made it a top-performing model for this task in Persian.
24
 
25
+ - **Developed by**: Amir Mohammad Ebrahiminasab
26
+ - **Shared by**: Amir Mohammad Ebrahiminasab
27
+ - **Model type**: xlm-roberta
28
+ - **Language(s)**: fa (Persian)
29
+ - **License**: MIT
30
+ - **Finetuned from model**: `pedramyazdipoor/persian_xlm_roberta_large`
31
 
32
+ ---
 
 
 
 
 
 
33
 
34
+ ## Model Sources
35
 
36
+ - **Repository**: [AmoooEBI/xlm-roberta-fa-qa-finetuned-on-PersianQA](https://huggingface.co/AmoooEBI/xlm-roberta-fa-qa-finetuned-on-PersianQA)
37
+ - **Demo**: [Persian QA Chatbot – Hugging Face Space](https://huggingface.co/spaces/AmoooEBI/Persian-QA-Chatbot)
38
 
39
+ ---
 
 
40
 
41
  ## Uses
42
 
 
 
43
  ### Direct Use
44
 
45
+ The model can be used directly for extractive question answering in Persian using the pipeline function.
 
 
46
 
47
+ ```python
48
+ from transformers import pipeline
49
 
50
+ qa_pipeline = pipeline(
51
+ "question-answering",
52
+ model="AmoooEBI/xlm-roberta-fa-qa-finetuned-on-PersianQA",
53
+ tokenizer="AmoooEBI/xlm-roberta-fa-qa-finetuned-on-PersianQA"
54
+ )
55
 
56
+ context = "مهانداس کارامچاند گاندی رهبر سیاسی و معنوی هندی‌ها بود که ملت هند را در راه آزادی از استعمار امپراتوری بریتانیا رهبری کرد."
57
+ question = "گاندی که بود؟"
58
 
59
+ result = qa_pipeline(question=question, context=context)
60
+ print(f"Answer: '{result['answer']}'")
61
+ ````
62
 
63
+ ---
 
 
64
 
65
  ## Bias, Risks, and Limitations
66
 
67
+ The model's performance is highly dependent on the quality and domain of the context provided. It was trained on the PersianQA dataset, which is largely based on Wikipedia articles. Therefore, its performance may degrade on texts with different styles, such as conversational or technical documents.
68
 
69
+ Like ParsBERT, this model also shows a preference for shorter answers, with its Exact Match score dropping for answers longer than the dataset's average. However, its F1-score remains high, indicating it can still identify the correct span of text with high token overlap.
70
 
71
+ ---
72
 
73
+ ## Recommendations
74
 
75
+ Users should be aware of the model's limitations, particularly the potential for lower Exact Match scores on long-form answers. For applications requiring high precision, outputs should be validated.
76
 
77
+ ---
78
 
79
+ ## How to Get Started with the Model
80
 
81
+ Use the code below to get started with the model using PyTorch.
82
 
83
+ ```python
84
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
85
+ import torch
86
 
87
+ tokenizer = AutoTokenizer.from_pretrained("AmoooEBI/xlm-roberta-fa-qa-finetuned-on-PersianQA")
88
+ model = AutoModelForQuestionAnswering.from_pretrained("AmoooEBI/xlm-roberta-fa-qa-finetuned-on-PersianQA")
89
 
90
+ context = "پایتخت اسپانیا شهر مادرید است."
91
+ question = "پایتخت اسپانیا کجاست؟"
92
 
93
+ inputs = tokenizer(question, context, return_tensors="pt")
94
+ with torch.no_grad():
95
+ outputs = model(**inputs)
96
 
97
+ answer_start_index = outputs.start_logits.argmax()
98
+ answer_end_index = outputs.end_logits.argmax()
99
 
100
+ predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
101
+ answer = tokenizer.decode(predict_answer_tokens)
102
 
103
+ print(f"Question: {question}")
104
+ print(f"Answer: {answer}")
105
+ ```
106
 
107
+ ---
108
 
109
+ ## Training Details
110
 
111
+ ### Training Data
112
 
113
+ The model was fine-tuned on the `SajjadAyoubi/persian_qa` dataset, which contains question-context-answer triplets in Persian, primarily from Wikipedia.
114
 
115
+ ### Training Procedure
116
 
117
+ **Preprocessing**
118
+ The training data was tokenized using the XLM-RoBERTa tokenizer. Contexts longer than the model's maximum input size were split into overlapping chunks using a sliding window (`doc_stride=128`). The start and end positions of the answer token were then mapped to these chunks.
119
 
120
+ **Training Hyperparameters**
121
 
122
+ * Training regime: LoRA (Parameter-Efficient Fine-Tuning)
123
+ * `r`: 16
124
+ * `lora_alpha`: 32
125
+ * `lora_dropout`: 0.1
126
+ * `target_modules`: `["query", "value"]`
127
+ * **Learning Rate**: 2 × 10⁻⁵
128
+ * **Epochs**: 8
129
+ * **Batch Size**: 8
130
 
131
+ **Speeds, Sizes, Times**
132
 
133
+ * Training Time: \~3 hours on a single GPU
134
+ * Trainable Parameters: 0.281% of model parameters
135
 
136
+ ---
137
 
138
+ ## Evaluation
139
 
140
+ ### Testing Data, Factors & Metrics
141
 
142
+ **Testing Data**
143
+ The evaluation was performed on the validation set of the `SajjadAyoubi/persian_qa` dataset.
144
 
145
+ **Factors**
146
 
147
+ * Answer Presence: Questions with and without answers
148
+ * Answer Length: Shorter vs. longer than the average (22.78 characters)
149
 
150
+ **Metrics**
151
 
152
+ * **F1-Score**: Measures token overlap
153
+ * **Exact Match (EM)**: Measures perfect span match
154
 
155
+ ---
156
 
157
  ### Results
158
 
159
+ **Overall Performance on the Validation Set (LoRA Fine-Tuned)**
160
 
161
+ | Model Status | Exact Match | F1-Score |
162
+ | ----------------------- | ----------- | -------- |
163
+ | Fine-Tuned Model (LoRA) | 69.90% | 84.85% |
164
 
165
+ **Performance on Data Subsets**
166
 
167
+ | Case Type | Exact Match | F1-Score |
168
+ | ---------- | ----------- | -------- |
169
+ | Has Answer | 62.06% | 83.42% |
170
+ | No Answer | 88.17% | 88.17% |
171
 
172
+ | Answer Length | Exact Match | F1-Score |
173
+ | ----------------- | ----------- | -------- |
174
+ | Longer than Avg. | 49.22% | 81.88% |
175
+ | Shorter than Avg. | 62.95% | 80.20% |
176
 
177
+ ---
 
 
178
 
179
  ## Environmental Impact
180
 
181
+ * **Hardware Type**: T4 GPU
182
+ * **Training Time**: \~3 hours
183
+ * **Cloud Provider**: Google Colab
184
+ * **Carbon Emitted**: Not calculated
185
 
186
+ ---
 
 
 
 
187
 
188
+ ## Technical Specifications
189
 
190
  ### Model Architecture and Objective
191
 
192
+ The model uses the XLM-RoBERTa-Large architecture with a question-answering head. The training objective was to minimize the loss for the start and end token classification.
193
 
194
  ### Compute Infrastructure
195
 
196
+ * **Hardware**: Single NVIDIA T4 GPU
197
+ * **Software**: `transformers`, `torch`, `datasets`, `evaluate`, `peft`
 
 
 
 
 
 
 
198
 
199
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
+ ## Model Card Authors
202
 
203
+ **Amir Mohammad Ebrahiminasab**
204
 
205
+ ---
206
 
207
  ## Model Card Contact
208
 
209
+ 📧 [ebrahiminasab82@gmail.com](mailto:ebrahiminasab82@gmail.com)