Integrate sentence transformers (#9)
Browse files- Base Integration with SentenceTransformers (2df56dc77ce0fbca90c338d38d2cffb4de4c9ea0)
- Update custom_st.py (f70ad8d07b0f89da5c767bc57d3453b8923938ac)
- Update README.md (27b4e411bf08eee10f4bd27941807530cce3099f)
- Update README.md (5b4def35a3fdbbe9c547cd2fce25896feb492d97)
- Update README.md (5ff08124217cda0a6a0a48ab93ada3aa2ac0a1c8)
- Update README.md (4f9008b5898196357c0cc9c767d767af1235cc32)
Co-authored-by: Solomatin Roman <Samoed@users.noreply.huggingface.co>
- 1_Pooling/config.json +10 -0
- README.md +57 -13
- config_sentence_transformers.json +7 -0
- custom_st.py +221 -0
- modules.json +20 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1536,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": true,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -3692,46 +3692,90 @@ The `GME` models support three types of input: **text**, **image**, and **image-
|
|
3692 |
|[`gme-Qwen2-VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | 67.48 | 69.73 | 67.44 |
|
3693 |
|
3694 |
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3695 |
**Use with custom code**
|
3696 |
|
3697 |
```python
|
3698 |
# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct/blob/main/gme_inference.py
|
3699 |
from gme_inference import GmeQwen2VL
|
3700 |
|
|
|
3701 |
texts = [
|
3702 |
-
"
|
3703 |
-
"
|
3704 |
]
|
3705 |
images = [
|
3706 |
-
'https://
|
3707 |
-
'https://
|
3708 |
]
|
3709 |
|
|
|
3710 |
gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")
|
3711 |
|
3712 |
# Single-modal embedding
|
3713 |
e_text = gme.get_text_embeddings(texts=texts)
|
3714 |
e_image = gme.get_image_embeddings(images=images)
|
3715 |
-
print((e_text
|
3716 |
-
##
|
3717 |
|
3718 |
# How to set embedding instruction
|
3719 |
-
e_query = gme.get_text_embeddings(texts=texts, instruction=
|
3720 |
# If is_query=False, we always use the default instruction.
|
3721 |
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
3722 |
-
print((e_query
|
3723 |
-
##
|
3724 |
|
3725 |
# Fused-modal embedding
|
3726 |
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
3727 |
-
print((e_fused
|
3728 |
-
##
|
3729 |
-
|
3730 |
```
|
3731 |
|
3732 |
## Evaluation
|
3733 |
|
3734 |
-
We validated the performance on our universal multimodal retrieval benchmark (**UMRB
|
3735 |
|
3736 |
| | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. |
|
3737 |
|--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:|
|
|
|
3692 |
|[`gme-Qwen2-VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | 67.48 | 69.73 | 67.44 |
|
3693 |
|
3694 |
## Usage
|
3695 |
+
**Use with sentence_transformers**
|
3696 |
+
|
3697 |
+
The `encode` function accept `str` or `dict` with key(s) in `{'text', 'image', 'prompt'}`.
|
3698 |
+
|
3699 |
+
**Do not pass `prompt` as the argument to `encode`**, pass as the input as a `dict` with a `prompt` key.
|
3700 |
+
|
3701 |
+
```python
|
3702 |
+
from sentence_transformers import SentenceTransformer
|
3703 |
+
|
3704 |
+
|
3705 |
+
t2i_prompt = 'Find an image that matches the given text.'
|
3706 |
+
texts = [
|
3707 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
|
3708 |
+
"Alibaba office.",
|
3709 |
+
]
|
3710 |
+
images = [
|
3711 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg',
|
3712 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg',
|
3713 |
+
]
|
3714 |
+
|
3715 |
+
|
3716 |
+
gme_st = SentenceTransformer("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")
|
3717 |
+
|
3718 |
+
# Single-modal embedding
|
3719 |
+
e_text = gme_st.encode(texts, convert_to_tensor=True)
|
3720 |
+
e_image = gme_st.encode([dict(image=i) for i in images], convert_to_tensor=True)
|
3721 |
+
print('Single-modal', (e_text @ e_image.T).tolist())
|
3722 |
+
## Single-modal [[0.356201171875, 0.06536865234375], [0.041717529296875, 0.37890625]]
|
3723 |
+
|
3724 |
+
# How to set embedding instruction
|
3725 |
+
e_query = gme_st.encode([dict(text=t, prompt=t2i_prompt) for t in texts], convert_to_tensor=True)
|
3726 |
+
# If no prompt, we always use the default instruction.
|
3727 |
+
e_corpus = gme_st.encode([dict(image=i) for i in images], convert_to_tensor=True)
|
3728 |
+
print('Single-modal with instruction', (e_query @ e_corpus.T).tolist())
|
3729 |
+
## Single-modal with instruction [[0.425537109375, 0.1158447265625], [0.049835205078125, 0.413818359375]]
|
3730 |
+
|
3731 |
+
# Fused-modal embedding
|
3732 |
+
e_fused = gme_st.encode([dict(text=t, image=i) for t, i in zip(texts, images)], convert_to_tensor=True)
|
3733 |
+
print('Fused-modal', (e_fused @ e_fused.T).tolist())
|
3734 |
+
## Fused-modal [[0.99951171875, 0.0556640625], [0.0556640625, 0.99951171875]]
|
3735 |
+
```
|
3736 |
+
|
3737 |
+
|
3738 |
**Use with custom code**
|
3739 |
|
3740 |
```python
|
3741 |
# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct/blob/main/gme_inference.py
|
3742 |
from gme_inference import GmeQwen2VL
|
3743 |
|
3744 |
+
t2i_prompt = 'Find an image that matches the given text.'
|
3745 |
texts = [
|
3746 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
|
3747 |
+
"Alibaba office.",
|
3748 |
]
|
3749 |
images = [
|
3750 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg',
|
3751 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg',
|
3752 |
]
|
3753 |
|
3754 |
+
|
3755 |
gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")
|
3756 |
|
3757 |
# Single-modal embedding
|
3758 |
e_text = gme.get_text_embeddings(texts=texts)
|
3759 |
e_image = gme.get_image_embeddings(images=images)
|
3760 |
+
print('Single-modal', (e_text @ e_image.T).tolist())
|
3761 |
+
## [[0.359619140625, 0.0655517578125], [0.04180908203125, 0.374755859375]]
|
3762 |
|
3763 |
# How to set embedding instruction
|
3764 |
+
e_query = gme.get_text_embeddings(texts=texts, instruction=t2i_prompt)
|
3765 |
# If is_query=False, we always use the default instruction.
|
3766 |
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
3767 |
+
print('Single-modal with instruction', (e_query @ e_corpus.T).tolist())
|
3768 |
+
## [[0.429931640625, 0.11505126953125], [0.049835205078125, 0.409423828125]]
|
3769 |
|
3770 |
# Fused-modal embedding
|
3771 |
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
3772 |
+
print('Fused-modal', (e_fused @ e_fused.T).tolist())
|
3773 |
+
## [[1.0, 0.05511474609375], [0.05511474609375, 1.0]]
|
|
|
3774 |
```
|
3775 |
|
3776 |
## Evaluation
|
3777 |
|
3778 |
+
We validated the performance on our universal multimodal retrieval benchmark (**UMRB**, see [Release UMRB](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct/discussions/2)) among others.
|
3779 |
|
3780 |
| | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. |
|
3781 |
|--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:|
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompts": {
|
3 |
+
"query": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
4 |
+
},
|
5 |
+
"default_prompt_name": null,
|
6 |
+
"similarity_fn_name": null
|
7 |
+
}
|
custom_st.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from typing import Any, Dict, Optional, List
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from sentence_transformers.models import Transformer as BaseTransformer
|
6 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
7 |
+
|
8 |
+
|
9 |
+
class MultiModalTransformer(BaseTransformer):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
model_name_or_path: str,
|
13 |
+
cache_dir: Optional[str] = None,
|
14 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
15 |
+
min_image_tokens: int = 256,
|
16 |
+
max_image_tokens: int = 1280,
|
17 |
+
max_length: int = 1800,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
super().__init__(model_name_or_path, **kwargs)
|
21 |
+
if tokenizer_args is None:
|
22 |
+
tokenizer_args = {}
|
23 |
+
tokenizer_args.pop("trust_remote_code", None)
|
24 |
+
|
25 |
+
# Initialize processor
|
26 |
+
min_pixels = min_image_tokens * 28 * 28
|
27 |
+
max_pixels = max_image_tokens * 28 * 28
|
28 |
+
self.processor = AutoProcessor.from_pretrained(
|
29 |
+
model_name_or_path, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
|
30 |
+
)
|
31 |
+
self.processor.tokenizer.padding_side = 'right'
|
32 |
+
self.sep = ' '
|
33 |
+
self.max_length = max_length
|
34 |
+
self.normalize = True
|
35 |
+
|
36 |
+
def _load_model(
|
37 |
+
self,
|
38 |
+
model_name_or_path: str,
|
39 |
+
config,
|
40 |
+
cache_dir: str,
|
41 |
+
backend: str,
|
42 |
+
is_peft_model: bool,
|
43 |
+
**model_args,
|
44 |
+
) -> None:
|
45 |
+
model_args.pop("trust_remote_code", None)
|
46 |
+
self.auto_model = AutoModelForVision2Seq.from_pretrained(
|
47 |
+
model_name_or_path, torch_dtype=torch.float16, **model_args
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(
|
51 |
+
self, features: Dict[str, torch.Tensor], **kwargs
|
52 |
+
) -> Dict[str, torch.Tensor]:
|
53 |
+
if features.get("inputs_embeds", None) is None:
|
54 |
+
features["inputs_embeds"] = self.auto_model.base_model.embed_tokens(features["input_ids"])
|
55 |
+
if features.get("pixel_values", None) is not None:
|
56 |
+
features["pixel_values"] = features["pixel_values"].type(self.auto_model.visual.get_dtype())
|
57 |
+
image_embeds = self.auto_model.visual(
|
58 |
+
features["pixel_values"], grid_thw=features["image_grid_thw"]
|
59 |
+
)
|
60 |
+
image_mask = features["input_ids"] == self.auto_model.config.image_token_id
|
61 |
+
features["inputs_embeds"][image_mask] = image_embeds
|
62 |
+
# features.pop("pixel_values")
|
63 |
+
# features.pop("image_grid_thw")
|
64 |
+
# features.pop("input_ids")
|
65 |
+
inputs = {k: v for k, v in features.items() if k in 'position_ids,attention_mask,inputs_embeds'}
|
66 |
+
outputs = self.auto_model.model(
|
67 |
+
**inputs,
|
68 |
+
return_dict=True,
|
69 |
+
output_hidden_states=True,
|
70 |
+
# **kwargs
|
71 |
+
)
|
72 |
+
# pooling_mask = features["attention_mask"] if features.get("pooling_mask", None) is None else features["pooling_mask"]
|
73 |
+
# left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
74 |
+
# if left_padding:
|
75 |
+
# embeddings = outputs.last_hidden_state
|
76 |
+
# else:
|
77 |
+
# sequence_lengths = pooling_mask.sum(dim=1) - 1
|
78 |
+
# embeddings = outputs.last_hidden_state[torch.arange(
|
79 |
+
# outputs.last_hidden_state.shape[0], device=outputs.last_hidden_state.device
|
80 |
+
# ), sequence_lengths]
|
81 |
+
features.update({"token_embeddings": outputs.last_hidden_state})
|
82 |
+
return features
|
83 |
+
|
84 |
+
def tokenize(self, texts: List[List[Dict[str, Any]]] | List[str]) -> Dict[str, torch.Tensor]:
|
85 |
+
default_instruction = 'You are a helpful assistant.'
|
86 |
+
|
87 |
+
all_texts, all_images = list(), list()
|
88 |
+
for item in texts:
|
89 |
+
if isinstance(item, str):
|
90 |
+
txt, img, inst = item, None, default_instruction
|
91 |
+
elif isinstance(item, dict):
|
92 |
+
txt = item.get('text', None)
|
93 |
+
img = item.get('image', None)
|
94 |
+
inst = item.get('prompt', default_instruction)
|
95 |
+
else:
|
96 |
+
raise RuntimeError(f'Input format not supported! {item=}')
|
97 |
+
|
98 |
+
input_str = ''
|
99 |
+
if img is None:
|
100 |
+
all_images = None # All examples in the same batch are consistent
|
101 |
+
# or will have ValueError: Could not make a flat list of images from xxxx
|
102 |
+
else:
|
103 |
+
input_str += '<|vision_start|><|image_pad|><|vision_end|>'
|
104 |
+
img = fetch_image(img)
|
105 |
+
all_images.append(img)
|
106 |
+
if txt is not None:
|
107 |
+
input_str += txt
|
108 |
+
msg = f'<|im_start|>system\n{inst}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
|
109 |
+
all_texts.append(msg)
|
110 |
+
|
111 |
+
inputs = self.processor(
|
112 |
+
text=all_texts,
|
113 |
+
images=all_images,
|
114 |
+
padding="longest",
|
115 |
+
truncation=True,
|
116 |
+
max_length=self.max_seq_length,
|
117 |
+
return_tensors='pt'
|
118 |
+
)
|
119 |
+
return inputs
|
120 |
+
|
121 |
+
|
122 |
+
### Copied from qwen_vl_utils.vision_process.py
|
123 |
+
import base64
|
124 |
+
from io import BytesIO
|
125 |
+
import requests
|
126 |
+
|
127 |
+
IMAGE_FACTOR = 28
|
128 |
+
MIN_PIXELS = 4 * 28 * 28
|
129 |
+
MAX_PIXELS = 16384 * 28 * 28
|
130 |
+
MAX_RATIO = 200
|
131 |
+
|
132 |
+
|
133 |
+
def round_by_factor(number: int, factor: int) -> int:
|
134 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
135 |
+
return round(number / factor) * factor
|
136 |
+
|
137 |
+
|
138 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
139 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
140 |
+
return math.ceil(number / factor) * factor
|
141 |
+
|
142 |
+
|
143 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
144 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
145 |
+
return math.floor(number / factor) * factor
|
146 |
+
|
147 |
+
|
148 |
+
def smart_resize(
|
149 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
150 |
+
) -> tuple[int, int]:
|
151 |
+
"""
|
152 |
+
Rescales the image so that the following conditions are met:
|
153 |
+
|
154 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
155 |
+
|
156 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
157 |
+
|
158 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
159 |
+
"""
|
160 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
161 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
162 |
+
if h_bar * w_bar > max_pixels:
|
163 |
+
beta = math.sqrt((height * width) / max_pixels)
|
164 |
+
h_bar = floor_by_factor(height / beta, factor)
|
165 |
+
w_bar = floor_by_factor(width / beta, factor)
|
166 |
+
elif h_bar * w_bar < min_pixels:
|
167 |
+
beta = math.sqrt(min_pixels / (height * width))
|
168 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
169 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
170 |
+
|
171 |
+
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
172 |
+
logging.warning(
|
173 |
+
f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
174 |
+
)
|
175 |
+
if h_bar > w_bar:
|
176 |
+
h_bar = w_bar * MAX_RATIO
|
177 |
+
else:
|
178 |
+
w_bar = h_bar * MAX_RATIO
|
179 |
+
return h_bar, w_bar
|
180 |
+
|
181 |
+
|
182 |
+
def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
183 |
+
image_obj = None
|
184 |
+
if isinstance(image, Image.Image):
|
185 |
+
image_obj = image
|
186 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
187 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
188 |
+
elif image.startswith("file://"):
|
189 |
+
image_obj = Image.open(image[7:])
|
190 |
+
elif image.startswith("data:image"):
|
191 |
+
if "base64," in image:
|
192 |
+
_, base64_data = image.split("base64,", 1)
|
193 |
+
data = base64.b64decode(base64_data)
|
194 |
+
image_obj = Image.open(BytesIO(data))
|
195 |
+
else:
|
196 |
+
image_obj = Image.open(image)
|
197 |
+
if image_obj is None:
|
198 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
199 |
+
image = image_obj.convert("RGB")
|
200 |
+
## resize
|
201 |
+
# if "resized_height" in ele and "resized_width" in ele:
|
202 |
+
# resized_height, resized_width = smart_resize(
|
203 |
+
# ele["resized_height"],
|
204 |
+
# ele["resized_width"],
|
205 |
+
# factor=size_factor,
|
206 |
+
# )
|
207 |
+
# else:
|
208 |
+
width, height = image.size
|
209 |
+
# min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
210 |
+
# max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
211 |
+
resized_height, resized_width = smart_resize(
|
212 |
+
height,
|
213 |
+
width,
|
214 |
+
factor=size_factor,
|
215 |
+
min_pixels=MIN_PIXELS,
|
216 |
+
max_pixels=MAX_PIXELS,
|
217 |
+
)
|
218 |
+
image = image.resize((resized_width, resized_height))
|
219 |
+
|
220 |
+
return image
|
221 |
+
###
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "custom_st.MultiModalTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|