File size: 2,325 Bytes
1521a53
fbeb159
1521a53
92e38eb
1521a53
 
 
fbeb159
1521a53
92e38eb
1521a53
 
 
fabdc9d
1521a53
 
 
92e38eb
1521a53
92e38eb
3dc7690
92e38eb
1521a53
92e38eb
1521a53
92e38eb
1521a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92e38eb
 
 
 
 
 
9673942
92e38eb
 
 
fbeb159
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: Qwen/Qwen2.5-7B-Instruct
library_name: transformers
license: apache-2.0
tags:
- llama-factory
- generated_from_trainer
pipeline_tag: text-generation
model-index:
- name: WritingBench-Critic-Model-Qwen-7B
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# WritingBench-Critic-Model-Qwen-7B

<p align="center">
  πŸ“ƒ <a href="https://arxiv.org/abs/2503.05244" target="_blank">[Paper]</a> β€’ πŸš€ <a href="https://github.com/X-PLUG/WritingBench" target="_blank">[Github Repo]</a> β€’ πŸ“ <a href="https://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B" target="_blank">[Critic Model]</a> β€’ ✍️ <a href="https://huggingface.co/AQuarterMile/Writing-Model-Qwen-7B" target="_blank">[Writer-7B]</a> <a href="https://huggingface.co/AQuarterMile/Writing-Model-Qwen-32B-thinking" target="_blank">[Writer-32B]</a>
</p>

This model is fine-tuned from [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on a 50K SFT dataset for writing evaluation tasks.

For each criterion, the evaluator independently assigns a score on a 10-point scale to a response, providing both a score and a justification.


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Framework versions

- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3

## πŸ“ Citation

```
@misc{wu2025writingbench,
      title={WritingBench: A Comprehensive Benchmark for Generative Writing}, 
      author={Yuning Wu and Jiahao Mei and Ming Yan and Chenliang Li and Shaopeng Lai and Yuran Ren and Zijia Wang and Ji Zhang and Mengyue Wu and Qin Jin and Fei Huang},
      year={2025},
      url={https://arxiv.org/abs/2503.05244}, 
}
```