{ "results": { "agieval": { "acc,none": 0.4384373488147073, "acc_stderr,none": 0.005138774874733036, "alias": "agieval" }, "agieval_aqua_rat": { "alias": " - agieval_aqua_rat", "acc,none": 0.40551181102362205, "acc_stderr,none": 0.030868328175712653, "acc_norm,none": 0.38976377952755903, "acc_norm_stderr,none": 0.030661222674142036 }, "agieval_gaokao_biology": { "alias": " - agieval_gaokao_biology", "acc,none": 0.48095238095238096, "acc_stderr,none": 0.034560617865111484, "acc_norm,none": 0.4714285714285714, "acc_norm_stderr,none": 0.03452921053595503 }, "agieval_gaokao_chemistry": { "alias": " - agieval_gaokao_chemistry", "acc,none": 0.42028985507246375, "acc_stderr,none": 0.034391117954401376, "acc_norm,none": 0.3961352657004831, "acc_norm_stderr,none": 0.0340767350076416 }, "agieval_gaokao_chinese": { "alias": " - agieval_gaokao_chinese", "acc,none": 0.4186991869918699, "acc_stderr,none": 0.03151871344392194, "acc_norm,none": 0.42276422764227645, "acc_norm_stderr,none": 0.03156041407531481 }, "agieval_gaokao_english": { "alias": " - agieval_gaokao_english", "acc,none": 0.6993464052287581, "acc_stderr,none": 0.02625605383571896, "acc_norm,none": 0.738562091503268, "acc_norm_stderr,none": 0.025160998214292456 }, "agieval_gaokao_geography": { "alias": " - agieval_gaokao_geography", "acc,none": 0.5477386934673367, "acc_stderr,none": 0.03537112167025914, "acc_norm,none": 0.542713567839196, "acc_norm_stderr,none": 0.035403557368657 }, "agieval_gaokao_history": { "alias": " - agieval_gaokao_history", "acc,none": 0.4553191489361702, "acc_stderr,none": 0.03255525359340355, "acc_norm,none": 0.44680851063829785, "acc_norm_stderr,none": 0.0325005368436584 }, "agieval_gaokao_mathcloze": { "alias": " - agieval_gaokao_mathcloze", "acc,none": 0.09322033898305085, "acc_stderr,none": 0.02687901150866995 }, "agieval_gaokao_mathqa": { "alias": " - agieval_gaokao_mathqa", "acc,none": 0.32763532763532766, "acc_stderr,none": 0.025087869562833914, "acc_norm,none": 0.32763532763532766, "acc_norm_stderr,none": 0.025087869562833914 }, "agieval_gaokao_physics": { "alias": " - agieval_gaokao_physics", "acc,none": 0.48, "acc_stderr,none": 0.03541569365103447, "acc_norm,none": 0.455, "acc_norm_stderr,none": 0.03530021993753286 }, "agieval_jec_qa_ca": { "alias": " - agieval_jec_qa_ca", "acc,none": 0.5085085085085085, "acc_stderr,none": 0.01582493166517233, "acc_norm,none": 0.5105105105105106, "acc_norm_stderr,none": 0.015823726166373807 }, "agieval_jec_qa_kd": { "alias": " - agieval_jec_qa_kd", "acc,none": 0.562, "acc_stderr,none": 0.01569721001969469, "acc_norm,none": 0.553, "acc_norm_stderr,none": 0.015730176046009074 }, "agieval_logiqa_en": { "alias": " - agieval_logiqa_en", "acc,none": 0.402457757296467, "acc_stderr,none": 0.01923480462752409, "acc_norm,none": 0.4055299539170507, "acc_norm_stderr,none": 0.019258381208154273 }, "agieval_logiqa_zh": { "alias": " - agieval_logiqa_zh", "acc,none": 0.4009216589861751, "acc_stderr,none": 0.01922272222545092, "acc_norm,none": 0.40706605222734255, "acc_norm_stderr,none": 0.01926987610639943 }, "agieval_lsat_ar": { "alias": " - agieval_lsat_ar", "acc,none": 0.2217391304347826, "acc_stderr,none": 0.027451496604058916, "acc_norm,none": 0.2217391304347826, "acc_norm_stderr,none": 0.02745149660405892 }, "agieval_lsat_lr": { "alias": " - agieval_lsat_lr", "acc,none": 0.5372549019607843, "acc_stderr,none": 0.022100505922784033, "acc_norm,none": 0.49607843137254903, "acc_norm_stderr,none": 0.022161428699498387 }, "agieval_lsat_rc": { "alias": " - agieval_lsat_rc", "acc,none": 0.6654275092936803, "acc_stderr,none": 0.028822264091264625, "acc_norm,none": 0.6579925650557621, "acc_norm_stderr,none": 0.028977497019824838 }, "agieval_math": { "alias": " - agieval_math", "acc,none": 0.106, "acc_stderr,none": 0.009739551265785134 }, "agieval_sat_en": { "alias": " - agieval_sat_en", "acc,none": 0.8106796116504854, "acc_stderr,none": 0.027361908621979958, "acc_norm,none": 0.7961165048543689, "acc_norm_stderr,none": 0.028138595623668772 }, "agieval_sat_en_without_passage": { "alias": " - agieval_sat_en_without_passage", "acc,none": 0.4563106796116505, "acc_stderr,none": 0.03478794599787744, "acc_norm,none": 0.45145631067961167, "acc_norm_stderr,none": 0.03475654072342856 }, "agieval_sat_math": { "alias": " - agieval_sat_math", "acc,none": 0.5227272727272727, "acc_stderr,none": 0.03375194708230163, "acc_norm,none": 0.5, "acc_norm_stderr,none": 0.033786868919974296 } }, "groups": { "agieval": { "acc,none": 0.4384373488147073, "acc_stderr,none": 0.005138774874733036, "alias": "agieval" } }, "group_subtasks": { "agieval": [ "agieval_gaokao_biology", "agieval_gaokao_chemistry", "agieval_gaokao_chinese", "agieval_gaokao_geography", "agieval_gaokao_history", "agieval_gaokao_mathcloze", "agieval_gaokao_mathqa", "agieval_gaokao_physics", "agieval_jec_qa_ca", "agieval_jec_qa_kd", "agieval_logiqa_zh", "agieval_aqua_rat", "agieval_gaokao_english", "agieval_logiqa_en", "agieval_lsat_ar", "agieval_lsat_lr", "agieval_lsat_rc", "agieval_math", "agieval_sat_en_without_passage", "agieval_sat_en", "agieval_sat_math" ] }, "configs": { "agieval_aqua_rat": { "task": "agieval_aqua_rat", "dataset_path": "hails/agieval-aqua-rat", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_biology": { "task": "agieval_gaokao_biology", "dataset_path": "hails/agieval-gaokao-biology", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_chemistry": { "task": "agieval_gaokao_chemistry", "dataset_path": "hails/agieval-gaokao-chemistry", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_chinese": { "task": "agieval_gaokao_chinese", "dataset_path": "hails/agieval-gaokao-chinese", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_english": { "task": "agieval_gaokao_english", "dataset_path": "hails/agieval-gaokao-english", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_geography": { "task": "agieval_gaokao_geography", "dataset_path": "hails/agieval-gaokao-geography", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_history": { "task": "agieval_gaokao_history", "dataset_path": "hails/agieval-gaokao-history", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_mathcloze": { "task": "agieval_gaokao_mathcloze", "dataset_path": "hails/agieval-gaokao-mathcloze", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{answer}}", "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "until": [ "Q:" ] }, "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_mathqa": { "task": "agieval_gaokao_mathqa", "dataset_path": "hails/agieval-gaokao-mathqa", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_gaokao_physics": { "task": "agieval_gaokao_physics", "dataset_path": "hails/agieval-gaokao-physics", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_jec_qa_ca": { "task": "agieval_jec_qa_ca", "dataset_path": "hails/agieval-jec-qa-ca", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_jec_qa_kd": { "task": "agieval_jec_qa_kd", "dataset_path": "hails/agieval-jec-qa-kd", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_logiqa_en": { "task": "agieval_logiqa_en", "dataset_path": "hails/agieval-logiqa-en", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_logiqa_zh": { "task": "agieval_logiqa_zh", "dataset_path": "hails/agieval-logiqa-zh", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_lsat_ar": { "task": "agieval_lsat_ar", "dataset_path": "hails/agieval-lsat-ar", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_lsat_lr": { "task": "agieval_lsat_lr", "dataset_path": "hails/agieval-lsat-lr", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_lsat_rc": { "task": "agieval_lsat_rc", "dataset_path": "hails/agieval-lsat-rc", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_math": { "task": "agieval_math", "dataset_path": "hails/agieval-math", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{answer}}", "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "until": [ "Q:" ] }, "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_sat_en": { "task": "agieval_sat_en", "dataset_path": "hails/agieval-sat-en", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_sat_en_without_passage": { "task": "agieval_sat_en_without_passage", "dataset_path": "hails/agieval-sat-en-without-passage", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } }, "agieval_sat_math": { "task": "agieval_sat_math", "dataset_path": "hails/agieval-sat-math", "test_split": "test", "doc_to_text": "{{query}}", "doc_to_target": "{{gold}}", "doc_to_choice": "{{choices}}", "process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0 } } }, "versions": { "agieval": 0.0, "agieval_aqua_rat": 1.0, "agieval_gaokao_biology": 1.0, "agieval_gaokao_chemistry": 1.0, "agieval_gaokao_chinese": 1.0, "agieval_gaokao_english": 1.0, "agieval_gaokao_geography": 1.0, "agieval_gaokao_history": 1.0, "agieval_gaokao_mathcloze": 1.0, "agieval_gaokao_mathqa": 1.0, "agieval_gaokao_physics": 1.0, "agieval_jec_qa_ca": 1.0, "agieval_jec_qa_kd": 1.0, "agieval_logiqa_en": 1.0, "agieval_logiqa_zh": 1.0, "agieval_lsat_ar": 1.0, "agieval_lsat_lr": 1.0, "agieval_lsat_rc": 1.0, "agieval_math": 1.0, "agieval_sat_en": 1.0, "agieval_sat_en_without_passage": 1.0, "agieval_sat_math": 1.0 }, "n-shot": { "agieval_aqua_rat": 0, "agieval_gaokao_biology": 0, "agieval_gaokao_chemistry": 0, "agieval_gaokao_chinese": 0, "agieval_gaokao_english": 0, "agieval_gaokao_geography": 0, "agieval_gaokao_history": 0, "agieval_gaokao_mathcloze": 0, "agieval_gaokao_mathqa": 0, "agieval_gaokao_physics": 0, "agieval_jec_qa_ca": 0, "agieval_jec_qa_kd": 0, "agieval_logiqa_en": 0, "agieval_logiqa_zh": 0, "agieval_lsat_ar": 0, "agieval_lsat_lr": 0, "agieval_lsat_rc": 0, "agieval_math": 0, "agieval_sat_en": 0, "agieval_sat_en_without_passage": 0, "agieval_sat_math": 0 }, "higher_is_better": { "agieval": { "acc": true, "acc_norm": true }, "agieval_aqua_rat": { "acc": true, "acc_norm": true }, "agieval_gaokao_biology": { "acc": true, "acc_norm": true }, "agieval_gaokao_chemistry": { "acc": true, "acc_norm": true }, "agieval_gaokao_chinese": { "acc": true, "acc_norm": true }, "agieval_gaokao_english": { "acc": true, "acc_norm": true }, "agieval_gaokao_geography": { "acc": true, "acc_norm": true }, "agieval_gaokao_history": { "acc": true, "acc_norm": true }, "agieval_gaokao_mathcloze": { "acc": true }, "agieval_gaokao_mathqa": { "acc": true, "acc_norm": true }, "agieval_gaokao_physics": { "acc": true, "acc_norm": true }, "agieval_jec_qa_ca": { "acc": true, "acc_norm": true }, "agieval_jec_qa_kd": { "acc": true, "acc_norm": true }, "agieval_logiqa_en": { "acc": true, "acc_norm": true }, "agieval_logiqa_zh": { "acc": true, "acc_norm": true }, "agieval_lsat_ar": { "acc": true, "acc_norm": true }, "agieval_lsat_lr": { "acc": true, "acc_norm": true }, "agieval_lsat_rc": { "acc": true, "acc_norm": true }, "agieval_math": { "acc": true }, "agieval_sat_en": { "acc": true, "acc_norm": true }, "agieval_sat_en_without_passage": { "acc": true, "acc_norm": true }, "agieval_sat_math": { "acc": true, "acc_norm": true } }, "n-samples": { "agieval_gaokao_biology": { "original": 210, "effective": 210 }, "agieval_gaokao_chemistry": { "original": 207, "effective": 207 }, "agieval_gaokao_chinese": { "original": 246, "effective": 246 }, "agieval_gaokao_geography": { "original": 199, "effective": 199 }, "agieval_gaokao_history": { "original": 235, "effective": 235 }, "agieval_gaokao_mathcloze": { "original": 118, "effective": 118 }, "agieval_gaokao_mathqa": { "original": 351, "effective": 351 }, "agieval_gaokao_physics": { "original": 200, "effective": 200 }, "agieval_jec_qa_ca": { "original": 999, "effective": 999 }, "agieval_jec_qa_kd": { "original": 1000, "effective": 1000 }, "agieval_logiqa_zh": { "original": 651, "effective": 651 }, "agieval_aqua_rat": { "original": 254, "effective": 254 }, "agieval_gaokao_english": { "original": 306, "effective": 306 }, "agieval_logiqa_en": { "original": 651, "effective": 651 }, "agieval_lsat_ar": { "original": 230, "effective": 230 }, "agieval_lsat_lr": { "original": 510, "effective": 510 }, "agieval_lsat_rc": { "original": 269, "effective": 269 }, "agieval_math": { "original": 1000, "effective": 1000 }, "agieval_sat_en_without_passage": { "original": 206, "effective": 206 }, "agieval_sat_en": { "original": 206, "effective": 206 }, "agieval_sat_math": { "original": 220, "effective": 220 } }, "config": { "model": "hf", "model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True", "model_num_parameters": 7455550464, "model_dtype": "torch.bfloat16", "model_revision": "main", "model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6", "batch_size": 1, "batch_sizes": [], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "5e10e017", "date": 1736906617.337926, "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", "transformers_version": "4.48.0", "upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711", "tokenizer_pad_token": [ "<|pad|>", "2023" ], "tokenizer_eos_token": [ "<|endoftext|>", "11" ], "tokenizer_bos_token": [ null, "None" ], "eot_token_id": 11, "max_length": 32768, "task_hashes": { "agieval_gaokao_biology": "19067f814ce4acb5c8b4db09600249eb11928dfeaabfb29026fbcc5aeae9bf6e", "agieval_gaokao_chemistry": "2aeca40c247a4384598991ab7645d5d337bd76947d4c5256933e210a01b2b73c", "agieval_gaokao_chinese": "11a6a9f458b461a70acda2dd2f424c7f68430c0ab9d8b1a62655e01cedda7fbe", "agieval_gaokao_geography": "16f33d14fe56d3b156071286a973d378fdc31d2953e97910506a74ffa9deb726", "agieval_gaokao_history": "812ddb5af1d5ee5b792434865d543e48911ac58dd98f58b28a1e55ebbd899933", "agieval_gaokao_mathcloze": "75ecfccf5d9d01dcae7593e210c755e953d0f9e76634565a62fe40a4c08b02d7", "agieval_gaokao_mathqa": "1a62d808a5c27751c285ba7f0d111de21b7bceddb3f180f2e12ea864ba0e3f21", "agieval_gaokao_physics": "c4dca484c75b47142e23919123632aa6da66b7e4a5ea6cce3a5d2cf834039312", "agieval_jec_qa_ca": "dc63435e7da4ca4da0c86837082ae6c95ae4f5e868a6e2e8e8c388fdb292829c", "agieval_jec_qa_kd": "a60a905d40fceb91c419e45b42cc80f77ac0c8b2154795a3c27ea2c8717843da", "agieval_logiqa_zh": "064313b20368e01816c3222904da40cd36813d6ce3a10492074f3134dd1e9a25", "agieval_aqua_rat": "590732bf8f23653400bcc45709ef3aa17cc1eaa69d228cc1eabb11bd1b48600d", "agieval_gaokao_english": "308d1ba44ed10ddf2626ace40f23a0700e31b7ca361fb77d683d103b9ab653ff", "agieval_logiqa_en": "1a372f08810b63ad9abe4766c1ab68fd24f0a86f7604f08f32127bde985d9c29", "agieval_lsat_ar": "177ca1fa872eb6221c8d697a1c6c49d44ca6989d11688348360bfbb9af5bb3dc", "agieval_lsat_lr": "50bb8b6c692ee86cfab3e6b4617b246fb654c713ebd438497d11008626ee5cef", "agieval_lsat_rc": "9c404a0b73f50b3f71b611aa3cf5d65542d5faad568abf9d85c41404504290a7", "agieval_math": "846f11659e5b8569f30b18c66e21dc1b40368bf041133d68d5523dac0ae27853", "agieval_sat_en_without_passage": "b249ac869804c4f6b1884c5b855302fab9acb3e9cad970c0398681ed514a38a2", "agieval_sat_en": "86c34b77b2f5ea8353df8dabe480afcc613505e96de27ffd7aa132a9d725d6eb", "agieval_sat_math": "1f5c90ed7628a8f9a0ea8a08290595417e73f3793e131a2aa13e9b3f62aa4798" }, "model_source": "hf", "model_name": "tiiuae/Falcon3-7B-Instruct", "model_name_sanitized": "tiiuae__Falcon3-7B-Instruct", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": false, "chat_template": null, "chat_template_sha": null, "start_time": 616867.569233521, "end_time": 617195.20891048, "total_evaluation_time_seconds": "327.639676959021" }