naazahrani's picture
Adding evaluation results
661e616 verified
{
"results": {
"agieval": {
"acc,none": 0.4384373488147073,
"acc_stderr,none": 0.005138774874733036,
"alias": "agieval"
},
"agieval_aqua_rat": {
"alias": " - agieval_aqua_rat",
"acc,none": 0.40551181102362205,
"acc_stderr,none": 0.030868328175712653,
"acc_norm,none": 0.38976377952755903,
"acc_norm_stderr,none": 0.030661222674142036
},
"agieval_gaokao_biology": {
"alias": " - agieval_gaokao_biology",
"acc,none": 0.48095238095238096,
"acc_stderr,none": 0.034560617865111484,
"acc_norm,none": 0.4714285714285714,
"acc_norm_stderr,none": 0.03452921053595503
},
"agieval_gaokao_chemistry": {
"alias": " - agieval_gaokao_chemistry",
"acc,none": 0.42028985507246375,
"acc_stderr,none": 0.034391117954401376,
"acc_norm,none": 0.3961352657004831,
"acc_norm_stderr,none": 0.0340767350076416
},
"agieval_gaokao_chinese": {
"alias": " - agieval_gaokao_chinese",
"acc,none": 0.4186991869918699,
"acc_stderr,none": 0.03151871344392194,
"acc_norm,none": 0.42276422764227645,
"acc_norm_stderr,none": 0.03156041407531481
},
"agieval_gaokao_english": {
"alias": " - agieval_gaokao_english",
"acc,none": 0.6993464052287581,
"acc_stderr,none": 0.02625605383571896,
"acc_norm,none": 0.738562091503268,
"acc_norm_stderr,none": 0.025160998214292456
},
"agieval_gaokao_geography": {
"alias": " - agieval_gaokao_geography",
"acc,none": 0.5477386934673367,
"acc_stderr,none": 0.03537112167025914,
"acc_norm,none": 0.542713567839196,
"acc_norm_stderr,none": 0.035403557368657
},
"agieval_gaokao_history": {
"alias": " - agieval_gaokao_history",
"acc,none": 0.4553191489361702,
"acc_stderr,none": 0.03255525359340355,
"acc_norm,none": 0.44680851063829785,
"acc_norm_stderr,none": 0.0325005368436584
},
"agieval_gaokao_mathcloze": {
"alias": " - agieval_gaokao_mathcloze",
"acc,none": 0.09322033898305085,
"acc_stderr,none": 0.02687901150866995
},
"agieval_gaokao_mathqa": {
"alias": " - agieval_gaokao_mathqa",
"acc,none": 0.32763532763532766,
"acc_stderr,none": 0.025087869562833914,
"acc_norm,none": 0.32763532763532766,
"acc_norm_stderr,none": 0.025087869562833914
},
"agieval_gaokao_physics": {
"alias": " - agieval_gaokao_physics",
"acc,none": 0.48,
"acc_stderr,none": 0.03541569365103447,
"acc_norm,none": 0.455,
"acc_norm_stderr,none": 0.03530021993753286
},
"agieval_jec_qa_ca": {
"alias": " - agieval_jec_qa_ca",
"acc,none": 0.5085085085085085,
"acc_stderr,none": 0.01582493166517233,
"acc_norm,none": 0.5105105105105106,
"acc_norm_stderr,none": 0.015823726166373807
},
"agieval_jec_qa_kd": {
"alias": " - agieval_jec_qa_kd",
"acc,none": 0.562,
"acc_stderr,none": 0.01569721001969469,
"acc_norm,none": 0.553,
"acc_norm_stderr,none": 0.015730176046009074
},
"agieval_logiqa_en": {
"alias": " - agieval_logiqa_en",
"acc,none": 0.402457757296467,
"acc_stderr,none": 0.01923480462752409,
"acc_norm,none": 0.4055299539170507,
"acc_norm_stderr,none": 0.019258381208154273
},
"agieval_logiqa_zh": {
"alias": " - agieval_logiqa_zh",
"acc,none": 0.4009216589861751,
"acc_stderr,none": 0.01922272222545092,
"acc_norm,none": 0.40706605222734255,
"acc_norm_stderr,none": 0.01926987610639943
},
"agieval_lsat_ar": {
"alias": " - agieval_lsat_ar",
"acc,none": 0.2217391304347826,
"acc_stderr,none": 0.027451496604058916,
"acc_norm,none": 0.2217391304347826,
"acc_norm_stderr,none": 0.02745149660405892
},
"agieval_lsat_lr": {
"alias": " - agieval_lsat_lr",
"acc,none": 0.5372549019607843,
"acc_stderr,none": 0.022100505922784033,
"acc_norm,none": 0.49607843137254903,
"acc_norm_stderr,none": 0.022161428699498387
},
"agieval_lsat_rc": {
"alias": " - agieval_lsat_rc",
"acc,none": 0.6654275092936803,
"acc_stderr,none": 0.028822264091264625,
"acc_norm,none": 0.6579925650557621,
"acc_norm_stderr,none": 0.028977497019824838
},
"agieval_math": {
"alias": " - agieval_math",
"acc,none": 0.106,
"acc_stderr,none": 0.009739551265785134
},
"agieval_sat_en": {
"alias": " - agieval_sat_en",
"acc,none": 0.8106796116504854,
"acc_stderr,none": 0.027361908621979958,
"acc_norm,none": 0.7961165048543689,
"acc_norm_stderr,none": 0.028138595623668772
},
"agieval_sat_en_without_passage": {
"alias": " - agieval_sat_en_without_passage",
"acc,none": 0.4563106796116505,
"acc_stderr,none": 0.03478794599787744,
"acc_norm,none": 0.45145631067961167,
"acc_norm_stderr,none": 0.03475654072342856
},
"agieval_sat_math": {
"alias": " - agieval_sat_math",
"acc,none": 0.5227272727272727,
"acc_stderr,none": 0.03375194708230163,
"acc_norm,none": 0.5,
"acc_norm_stderr,none": 0.033786868919974296
}
},
"groups": {
"agieval": {
"acc,none": 0.4384373488147073,
"acc_stderr,none": 0.005138774874733036,
"alias": "agieval"
}
},
"group_subtasks": {
"agieval": [
"agieval_gaokao_biology",
"agieval_gaokao_chemistry",
"agieval_gaokao_chinese",
"agieval_gaokao_geography",
"agieval_gaokao_history",
"agieval_gaokao_mathcloze",
"agieval_gaokao_mathqa",
"agieval_gaokao_physics",
"agieval_jec_qa_ca",
"agieval_jec_qa_kd",
"agieval_logiqa_zh",
"agieval_aqua_rat",
"agieval_gaokao_english",
"agieval_logiqa_en",
"agieval_lsat_ar",
"agieval_lsat_lr",
"agieval_lsat_rc",
"agieval_math",
"agieval_sat_en_without_passage",
"agieval_sat_en",
"agieval_sat_math"
]
},
"configs": {
"agieval_aqua_rat": {
"task": "agieval_aqua_rat",
"dataset_path": "hails/agieval-aqua-rat",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_biology": {
"task": "agieval_gaokao_biology",
"dataset_path": "hails/agieval-gaokao-biology",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_chemistry": {
"task": "agieval_gaokao_chemistry",
"dataset_path": "hails/agieval-gaokao-chemistry",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_chinese": {
"task": "agieval_gaokao_chinese",
"dataset_path": "hails/agieval-gaokao-chinese",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_english": {
"task": "agieval_gaokao_english",
"dataset_path": "hails/agieval-gaokao-english",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_geography": {
"task": "agieval_gaokao_geography",
"dataset_path": "hails/agieval-gaokao-geography",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_history": {
"task": "agieval_gaokao_history",
"dataset_path": "hails/agieval-gaokao-history",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_mathcloze": {
"task": "agieval_gaokao_mathcloze",
"dataset_path": "hails/agieval-gaokao-mathcloze",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"until": [
"Q:"
]
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_mathqa": {
"task": "agieval_gaokao_mathqa",
"dataset_path": "hails/agieval-gaokao-mathqa",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_physics": {
"task": "agieval_gaokao_physics",
"dataset_path": "hails/agieval-gaokao-physics",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_jec_qa_ca": {
"task": "agieval_jec_qa_ca",
"dataset_path": "hails/agieval-jec-qa-ca",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_jec_qa_kd": {
"task": "agieval_jec_qa_kd",
"dataset_path": "hails/agieval-jec-qa-kd",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_logiqa_en": {
"task": "agieval_logiqa_en",
"dataset_path": "hails/agieval-logiqa-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_logiqa_zh": {
"task": "agieval_logiqa_zh",
"dataset_path": "hails/agieval-logiqa-zh",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_ar": {
"task": "agieval_lsat_ar",
"dataset_path": "hails/agieval-lsat-ar",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_lr": {
"task": "agieval_lsat_lr",
"dataset_path": "hails/agieval-lsat-lr",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_rc": {
"task": "agieval_lsat_rc",
"dataset_path": "hails/agieval-lsat-rc",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_math": {
"task": "agieval_math",
"dataset_path": "hails/agieval-math",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"until": [
"Q:"
]
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en": {
"task": "agieval_sat_en",
"dataset_path": "hails/agieval-sat-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en_without_passage": {
"task": "agieval_sat_en_without_passage",
"dataset_path": "hails/agieval-sat-en-without-passage",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_math": {
"task": "agieval_sat_math",
"dataset_path": "hails/agieval-sat-math",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"agieval": 0.0,
"agieval_aqua_rat": 1.0,
"agieval_gaokao_biology": 1.0,
"agieval_gaokao_chemistry": 1.0,
"agieval_gaokao_chinese": 1.0,
"agieval_gaokao_english": 1.0,
"agieval_gaokao_geography": 1.0,
"agieval_gaokao_history": 1.0,
"agieval_gaokao_mathcloze": 1.0,
"agieval_gaokao_mathqa": 1.0,
"agieval_gaokao_physics": 1.0,
"agieval_jec_qa_ca": 1.0,
"agieval_jec_qa_kd": 1.0,
"agieval_logiqa_en": 1.0,
"agieval_logiqa_zh": 1.0,
"agieval_lsat_ar": 1.0,
"agieval_lsat_lr": 1.0,
"agieval_lsat_rc": 1.0,
"agieval_math": 1.0,
"agieval_sat_en": 1.0,
"agieval_sat_en_without_passage": 1.0,
"agieval_sat_math": 1.0
},
"n-shot": {
"agieval_aqua_rat": 0,
"agieval_gaokao_biology": 0,
"agieval_gaokao_chemistry": 0,
"agieval_gaokao_chinese": 0,
"agieval_gaokao_english": 0,
"agieval_gaokao_geography": 0,
"agieval_gaokao_history": 0,
"agieval_gaokao_mathcloze": 0,
"agieval_gaokao_mathqa": 0,
"agieval_gaokao_physics": 0,
"agieval_jec_qa_ca": 0,
"agieval_jec_qa_kd": 0,
"agieval_logiqa_en": 0,
"agieval_logiqa_zh": 0,
"agieval_lsat_ar": 0,
"agieval_lsat_lr": 0,
"agieval_lsat_rc": 0,
"agieval_math": 0,
"agieval_sat_en": 0,
"agieval_sat_en_without_passage": 0,
"agieval_sat_math": 0
},
"higher_is_better": {
"agieval": {
"acc": true,
"acc_norm": true
},
"agieval_aqua_rat": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_biology": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_chemistry": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_chinese": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_english": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_geography": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_history": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_mathcloze": {
"acc": true
},
"agieval_gaokao_mathqa": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_physics": {
"acc": true,
"acc_norm": true
},
"agieval_jec_qa_ca": {
"acc": true,
"acc_norm": true
},
"agieval_jec_qa_kd": {
"acc": true,
"acc_norm": true
},
"agieval_logiqa_en": {
"acc": true,
"acc_norm": true
},
"agieval_logiqa_zh": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_ar": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_lr": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_rc": {
"acc": true,
"acc_norm": true
},
"agieval_math": {
"acc": true
},
"agieval_sat_en": {
"acc": true,
"acc_norm": true
},
"agieval_sat_en_without_passage": {
"acc": true,
"acc_norm": true
},
"agieval_sat_math": {
"acc": true,
"acc_norm": true
}
},
"n-samples": {
"agieval_gaokao_biology": {
"original": 210,
"effective": 210
},
"agieval_gaokao_chemistry": {
"original": 207,
"effective": 207
},
"agieval_gaokao_chinese": {
"original": 246,
"effective": 246
},
"agieval_gaokao_geography": {
"original": 199,
"effective": 199
},
"agieval_gaokao_history": {
"original": 235,
"effective": 235
},
"agieval_gaokao_mathcloze": {
"original": 118,
"effective": 118
},
"agieval_gaokao_mathqa": {
"original": 351,
"effective": 351
},
"agieval_gaokao_physics": {
"original": 200,
"effective": 200
},
"agieval_jec_qa_ca": {
"original": 999,
"effective": 999
},
"agieval_jec_qa_kd": {
"original": 1000,
"effective": 1000
},
"agieval_logiqa_zh": {
"original": 651,
"effective": 651
},
"agieval_aqua_rat": {
"original": 254,
"effective": 254
},
"agieval_gaokao_english": {
"original": 306,
"effective": 306
},
"agieval_logiqa_en": {
"original": 651,
"effective": 651
},
"agieval_lsat_ar": {
"original": 230,
"effective": 230
},
"agieval_lsat_lr": {
"original": 510,
"effective": 510
},
"agieval_lsat_rc": {
"original": 269,
"effective": 269
},
"agieval_math": {
"original": 1000,
"effective": 1000
},
"agieval_sat_en_without_passage": {
"original": 206,
"effective": 206
},
"agieval_sat_en": {
"original": 206,
"effective": 206
},
"agieval_sat_math": {
"original": 220,
"effective": 220
}
},
"config": {
"model": "hf",
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
"model_num_parameters": 7455550464,
"model_dtype": "torch.bfloat16",
"model_revision": "main",
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "5e10e017",
"date": 1736906617.337926,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.48.0",
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
"tokenizer_pad_token": [
"<|pad|>",
"2023"
],
"tokenizer_eos_token": [
"<|endoftext|>",
"11"
],
"tokenizer_bos_token": [
null,
"None"
],
"eot_token_id": 11,
"max_length": 32768,
"task_hashes": {
"agieval_gaokao_biology": "19067f814ce4acb5c8b4db09600249eb11928dfeaabfb29026fbcc5aeae9bf6e",
"agieval_gaokao_chemistry": "2aeca40c247a4384598991ab7645d5d337bd76947d4c5256933e210a01b2b73c",
"agieval_gaokao_chinese": "11a6a9f458b461a70acda2dd2f424c7f68430c0ab9d8b1a62655e01cedda7fbe",
"agieval_gaokao_geography": "16f33d14fe56d3b156071286a973d378fdc31d2953e97910506a74ffa9deb726",
"agieval_gaokao_history": "812ddb5af1d5ee5b792434865d543e48911ac58dd98f58b28a1e55ebbd899933",
"agieval_gaokao_mathcloze": "75ecfccf5d9d01dcae7593e210c755e953d0f9e76634565a62fe40a4c08b02d7",
"agieval_gaokao_mathqa": "1a62d808a5c27751c285ba7f0d111de21b7bceddb3f180f2e12ea864ba0e3f21",
"agieval_gaokao_physics": "c4dca484c75b47142e23919123632aa6da66b7e4a5ea6cce3a5d2cf834039312",
"agieval_jec_qa_ca": "dc63435e7da4ca4da0c86837082ae6c95ae4f5e868a6e2e8e8c388fdb292829c",
"agieval_jec_qa_kd": "a60a905d40fceb91c419e45b42cc80f77ac0c8b2154795a3c27ea2c8717843da",
"agieval_logiqa_zh": "064313b20368e01816c3222904da40cd36813d6ce3a10492074f3134dd1e9a25",
"agieval_aqua_rat": "590732bf8f23653400bcc45709ef3aa17cc1eaa69d228cc1eabb11bd1b48600d",
"agieval_gaokao_english": "308d1ba44ed10ddf2626ace40f23a0700e31b7ca361fb77d683d103b9ab653ff",
"agieval_logiqa_en": "1a372f08810b63ad9abe4766c1ab68fd24f0a86f7604f08f32127bde985d9c29",
"agieval_lsat_ar": "177ca1fa872eb6221c8d697a1c6c49d44ca6989d11688348360bfbb9af5bb3dc",
"agieval_lsat_lr": "50bb8b6c692ee86cfab3e6b4617b246fb654c713ebd438497d11008626ee5cef",
"agieval_lsat_rc": "9c404a0b73f50b3f71b611aa3cf5d65542d5faad568abf9d85c41404504290a7",
"agieval_math": "846f11659e5b8569f30b18c66e21dc1b40368bf041133d68d5523dac0ae27853",
"agieval_sat_en_without_passage": "b249ac869804c4f6b1884c5b855302fab9acb3e9cad970c0398681ed514a38a2",
"agieval_sat_en": "86c34b77b2f5ea8353df8dabe480afcc613505e96de27ffd7aa132a9d725d6eb",
"agieval_sat_math": "1f5c90ed7628a8f9a0ea8a08290595417e73f3793e131a2aa13e9b3f62aa4798"
},
"model_source": "hf",
"model_name": "tiiuae/Falcon3-7B-Instruct",
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 616867.569233521,
"end_time": 617195.20891048,
"total_evaluation_time_seconds": "327.639676959021"
}