2imi9 commited on
Commit
b3d1fc3
·
verified ·
1 Parent(s): 4c6586c

Upload 32 files

Browse files
Files changed (32) hide show
  1. checkpoint-800/config.json +29 -0
  2. checkpoint-800/generation_config.json +10 -0
  3. checkpoint-800/global_step800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  4. checkpoint-800/global_step800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-800/global_step800/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-800/global_step800/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-800/global_step800/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-800/global_step800/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-800/global_step800/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-800/global_step800/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-800/global_step800/mp_rank_00_model_states.pt +3 -0
  12. checkpoint-800/latest +1 -0
  13. checkpoint-800/model-00001-of-00003.safetensors +3 -0
  14. checkpoint-800/model-00002-of-00003.safetensors +3 -0
  15. checkpoint-800/model-00003-of-00003.safetensors +3 -0
  16. checkpoint-800/model.safetensors.index.json +298 -0
  17. checkpoint-800/rng_state_0.pth +3 -0
  18. checkpoint-800/rng_state_1.pth +3 -0
  19. checkpoint-800/rng_state_2.pth +3 -0
  20. checkpoint-800/rng_state_3.pth +3 -0
  21. checkpoint-800/rng_state_4.pth +3 -0
  22. checkpoint-800/rng_state_5.pth +3 -0
  23. checkpoint-800/rng_state_6.pth +3 -0
  24. checkpoint-800/rng_state_7.pth +3 -0
  25. checkpoint-800/scheduler.pt +3 -0
  26. checkpoint-800/special_tokens_map.json +35 -0
  27. checkpoint-800/tokenizer.json +0 -0
  28. checkpoint-800/tokenizer.model +3 -0
  29. checkpoint-800/tokenizer_config.json +2466 -0
  30. checkpoint-800/trainer_state.json +233 -0
  31. checkpoint-800/training_args.bin +3 -0
  32. checkpoint-800/zero_to_fp32.py +604 -0
checkpoint-800/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/gpt/work/ChunGuang/yi/Yi-6B-Chat",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 16384,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 4,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 5000000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.43.3",
27
+ "use_cache": false,
28
+ "vocab_size": 64000
29
+ }
checkpoint-800/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 6,
3
+ "do_sample": true,
4
+ "eos_token_id": 7,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.8,
9
+ "transformers_version": "4.43.3"
10
+ }
checkpoint-800/global_step800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb3c24531449162f4b4d16fb706653c7f8f1597030655bd71d696be25d8d1e32
3
+ size 9091560128
checkpoint-800/global_step800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9ebbb88c888b143472e4335163d06ac17f0c7e3cc2f10fc5c9a08c9e018d85b
3
+ size 9091561024
checkpoint-800/global_step800/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8aed1d7b61f4b3b22d6775441cb3635ff56cfcda8ca8fc0b8b293bd7da132f1
3
+ size 9091560704
checkpoint-800/global_step800/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4904f32a25787fb20e1f765a8228322cb3c82c841875541840ea9590eb316fd6
3
+ size 9091560768
checkpoint-800/global_step800/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aec2fe3b501d3838afd6a682ca8b491f140ec870bfa6cf52556d2892f1f518a
3
+ size 9091561024
checkpoint-800/global_step800/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6de018059174708e6592bbd1bf9f20de3bf03c0301eecdcccae3f8f2a7915780
3
+ size 9091560832
checkpoint-800/global_step800/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6aea05fc549c1159ce247db4af2a0428890c9104b8eb46f2ab00640493def1d
3
+ size 9091561024
checkpoint-800/global_step800/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b82bf310e570a710b46a0a607ac71a85a38b155adfd844a6199fbd51ec097f4
3
+ size 9091559936
checkpoint-800/global_step800/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d162ccfff53b97137fcbc166f7ca45ee1f1094a3a2749ae56d7fd28c3fa88cda
3
+ size 12122159224
checkpoint-800/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step800
checkpoint-800/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:926e5908b6520ee96d9c1baf9800569789e19ca7cfba2725486d251a90c081b8
3
+ size 4932711424
checkpoint-800/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:217897295a4c0b43a103cdbf4aab3f117dc4dbcd84f518150de4ff3d46a35e5f
3
+ size 4976802816
checkpoint-800/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e23ba1facf8e795e14fcf61e7423c6d9f9300bcc813faa08192001524a7b4c8c
3
+ size 2212590568
checkpoint-800/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 12122071040
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
checkpoint-800/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd91b55ec70610f86c48a7e73d6732900e11c3be5368695232b3aaba6dd4c441
3
+ size 15984
checkpoint-800/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78d4a1c809f72434e0a00f0f3f13ef6b87127ce2815b2d8a355f5e5b37e1e619
3
+ size 15984
checkpoint-800/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cdd48c1f78edb9bcb1532a5c241c6839b0d37b2fe04f331f5e95597a3370b42
3
+ size 15984
checkpoint-800/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18b86d2dd21a94a2542fb780b6ed421cbd9d23bd523ec6f05d48801c991ba88f
3
+ size 15984
checkpoint-800/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1fac20e30d49d2c14624d7465661b80c519faa80c1a5f613bce21fb646c2f0c
3
+ size 15984
checkpoint-800/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40003cfe07d67b570a6bb4e22e4f0cbdf3f1926ae24e9cb3e1e7074091a44dad
3
+ size 15984
checkpoint-800/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fd4d3d3c5915a22b32e6af55e0cb4e6e3606e91cb01d0482bec3dbe9028856f
3
+ size 15984
checkpoint-800/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f2c3e80015421fef566f15af8461932085c8e41f7e8ed9df75bb3a5d3902353
3
+ size 15984
checkpoint-800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c1f7deb6bf337bc08f03858bbb1a20b8e7417a26bea0009fb7265608ffb15a
3
+ size 1064
checkpoint-800/special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|im_sep|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|startoftext|>",
9
+ "lstrip": false,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<unk>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
checkpoint-800/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-800/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
3
+ size 1033105
checkpoint-800/tokenizer_config.json ADDED
@@ -0,0 +1,2466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|startoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<|Human|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "4": {
39
+ "content": "<|Assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "5": {
47
+ "content": "<|System|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "6": {
55
+ "content": "<|im_start|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "7": {
63
+ "content": "<|im_end|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "8": {
71
+ "content": "<|im_sep|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "9": {
79
+ "content": "<|reserved003|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "10": {
87
+ "content": "<|reserved004|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "11": {
95
+ "content": "<|reserved005|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "12": {
103
+ "content": "<|reserved006|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "13": {
111
+ "content": "<|reserved007|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "14": {
119
+ "content": "<fim_prefix>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "15": {
127
+ "content": "<fim_middle>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "16": {
135
+ "content": "<fim_suffix>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "17": {
143
+ "content": "<fim_pad>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "18": {
151
+ "content": "<filename>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "19": {
159
+ "content": "<gh_stars>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "20": {
167
+ "content": "<issue_start>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "21": {
175
+ "content": "<issue_comment>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "22": {
183
+ "content": "<issue_closed>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "23": {
191
+ "content": "<jupyter_start>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "24": {
199
+ "content": "<jupyter_text>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "25": {
207
+ "content": "<jupyter_code>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "26": {
215
+ "content": "<jupyter_output>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "27": {
223
+ "content": "<empty_output>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": false
229
+ },
230
+ "28": {
231
+ "content": "<commit_before>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": false
237
+ },
238
+ "29": {
239
+ "content": "<commit_msg>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": false
245
+ },
246
+ "30": {
247
+ "content": "<commit_after>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": false
253
+ },
254
+ "31": {
255
+ "content": "<reponame>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": false
261
+ },
262
+ "32": {
263
+ "content": "<h1>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": false
269
+ },
270
+ "33": {
271
+ "content": "<h1/>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": false
277
+ },
278
+ "34": {
279
+ "content": "</h1>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": false
285
+ },
286
+ "35": {
287
+ "content": "<h2>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": false
293
+ },
294
+ "36": {
295
+ "content": "<h2/>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": false
301
+ },
302
+ "37": {
303
+ "content": "</h2>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": false,
307
+ "single_word": false,
308
+ "special": false
309
+ },
310
+ "38": {
311
+ "content": "<h3>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": false,
315
+ "single_word": false,
316
+ "special": false
317
+ },
318
+ "39": {
319
+ "content": "<h3/>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": false,
323
+ "single_word": false,
324
+ "special": false
325
+ },
326
+ "40": {
327
+ "content": "</h3>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": false,
331
+ "single_word": false,
332
+ "special": false
333
+ },
334
+ "41": {
335
+ "content": "<h4>",
336
+ "lstrip": false,
337
+ "normalized": false,
338
+ "rstrip": false,
339
+ "single_word": false,
340
+ "special": false
341
+ },
342
+ "42": {
343
+ "content": "<h4/>",
344
+ "lstrip": false,
345
+ "normalized": false,
346
+ "rstrip": false,
347
+ "single_word": false,
348
+ "special": false
349
+ },
350
+ "43": {
351
+ "content": "</h4>",
352
+ "lstrip": false,
353
+ "normalized": false,
354
+ "rstrip": false,
355
+ "single_word": false,
356
+ "special": false
357
+ },
358
+ "44": {
359
+ "content": "<h5>",
360
+ "lstrip": false,
361
+ "normalized": false,
362
+ "rstrip": false,
363
+ "single_word": false,
364
+ "special": false
365
+ },
366
+ "45": {
367
+ "content": "<h5/>",
368
+ "lstrip": false,
369
+ "normalized": false,
370
+ "rstrip": false,
371
+ "single_word": false,
372
+ "special": false
373
+ },
374
+ "46": {
375
+ "content": "</h5>",
376
+ "lstrip": false,
377
+ "normalized": false,
378
+ "rstrip": false,
379
+ "single_word": false,
380
+ "special": false
381
+ },
382
+ "47": {
383
+ "content": "<br>",
384
+ "lstrip": false,
385
+ "normalized": false,
386
+ "rstrip": false,
387
+ "single_word": false,
388
+ "special": false
389
+ },
390
+ "48": {
391
+ "content": "<br/>",
392
+ "lstrip": false,
393
+ "normalized": false,
394
+ "rstrip": false,
395
+ "single_word": false,
396
+ "special": false
397
+ },
398
+ "49": {
399
+ "content": "</br>",
400
+ "lstrip": false,
401
+ "normalized": false,
402
+ "rstrip": false,
403
+ "single_word": false,
404
+ "special": false
405
+ },
406
+ "50": {
407
+ "content": "<strong>",
408
+ "lstrip": false,
409
+ "normalized": false,
410
+ "rstrip": false,
411
+ "single_word": false,
412
+ "special": false
413
+ },
414
+ "51": {
415
+ "content": "<strong/>",
416
+ "lstrip": false,
417
+ "normalized": false,
418
+ "rstrip": false,
419
+ "single_word": false,
420
+ "special": false
421
+ },
422
+ "52": {
423
+ "content": "</strong>",
424
+ "lstrip": false,
425
+ "normalized": false,
426
+ "rstrip": false,
427
+ "single_word": false,
428
+ "special": false
429
+ },
430
+ "53": {
431
+ "content": "<p>",
432
+ "lstrip": false,
433
+ "normalized": false,
434
+ "rstrip": false,
435
+ "single_word": false,
436
+ "special": false
437
+ },
438
+ "54": {
439
+ "content": "<p/>",
440
+ "lstrip": false,
441
+ "normalized": false,
442
+ "rstrip": false,
443
+ "single_word": false,
444
+ "special": false
445
+ },
446
+ "55": {
447
+ "content": "</p>",
448
+ "lstrip": false,
449
+ "normalized": false,
450
+ "rstrip": false,
451
+ "single_word": false,
452
+ "special": false
453
+ },
454
+ "56": {
455
+ "content": "<table>",
456
+ "lstrip": false,
457
+ "normalized": false,
458
+ "rstrip": false,
459
+ "single_word": false,
460
+ "special": false
461
+ },
462
+ "57": {
463
+ "content": "<table/>",
464
+ "lstrip": false,
465
+ "normalized": false,
466
+ "rstrip": false,
467
+ "single_word": false,
468
+ "special": false
469
+ },
470
+ "58": {
471
+ "content": "</table>",
472
+ "lstrip": false,
473
+ "normalized": false,
474
+ "rstrip": false,
475
+ "single_word": false,
476
+ "special": false
477
+ },
478
+ "59": {
479
+ "content": "<li>",
480
+ "lstrip": false,
481
+ "normalized": false,
482
+ "rstrip": false,
483
+ "single_word": false,
484
+ "special": false
485
+ },
486
+ "60": {
487
+ "content": "<li/>",
488
+ "lstrip": false,
489
+ "normalized": false,
490
+ "rstrip": false,
491
+ "single_word": false,
492
+ "special": false
493
+ },
494
+ "61": {
495
+ "content": "</li>",
496
+ "lstrip": false,
497
+ "normalized": false,
498
+ "rstrip": false,
499
+ "single_word": false,
500
+ "special": false
501
+ },
502
+ "62": {
503
+ "content": "<tr>",
504
+ "lstrip": false,
505
+ "normalized": false,
506
+ "rstrip": false,
507
+ "single_word": false,
508
+ "special": false
509
+ },
510
+ "63": {
511
+ "content": "<tr/>",
512
+ "lstrip": false,
513
+ "normalized": false,
514
+ "rstrip": false,
515
+ "single_word": false,
516
+ "special": false
517
+ },
518
+ "64": {
519
+ "content": "</tr>",
520
+ "lstrip": false,
521
+ "normalized": false,
522
+ "rstrip": false,
523
+ "single_word": false,
524
+ "special": false
525
+ },
526
+ "65": {
527
+ "content": "<tbody>",
528
+ "lstrip": false,
529
+ "normalized": false,
530
+ "rstrip": false,
531
+ "single_word": false,
532
+ "special": false
533
+ },
534
+ "66": {
535
+ "content": "<tbody/>",
536
+ "lstrip": false,
537
+ "normalized": false,
538
+ "rstrip": false,
539
+ "single_word": false,
540
+ "special": false
541
+ },
542
+ "67": {
543
+ "content": "</tbody>",
544
+ "lstrip": false,
545
+ "normalized": false,
546
+ "rstrip": false,
547
+ "single_word": false,
548
+ "special": false
549
+ },
550
+ "68": {
551
+ "content": "<img>",
552
+ "lstrip": false,
553
+ "normalized": false,
554
+ "rstrip": false,
555
+ "single_word": false,
556
+ "special": false
557
+ },
558
+ "69": {
559
+ "content": "<img/>",
560
+ "lstrip": false,
561
+ "normalized": false,
562
+ "rstrip": false,
563
+ "single_word": false,
564
+ "special": false
565
+ },
566
+ "70": {
567
+ "content": "</img>",
568
+ "lstrip": false,
569
+ "normalized": false,
570
+ "rstrip": false,
571
+ "single_word": false,
572
+ "special": false
573
+ },
574
+ "71": {
575
+ "content": "<b>",
576
+ "lstrip": false,
577
+ "normalized": false,
578
+ "rstrip": false,
579
+ "single_word": false,
580
+ "special": false
581
+ },
582
+ "72": {
583
+ "content": "<b/>",
584
+ "lstrip": false,
585
+ "normalized": false,
586
+ "rstrip": false,
587
+ "single_word": false,
588
+ "special": false
589
+ },
590
+ "73": {
591
+ "content": "</b>",
592
+ "lstrip": false,
593
+ "normalized": false,
594
+ "rstrip": false,
595
+ "single_word": false,
596
+ "special": false
597
+ },
598
+ "74": {
599
+ "content": "<td>",
600
+ "lstrip": false,
601
+ "normalized": false,
602
+ "rstrip": false,
603
+ "single_word": false,
604
+ "special": false
605
+ },
606
+ "75": {
607
+ "content": "<td/>",
608
+ "lstrip": false,
609
+ "normalized": false,
610
+ "rstrip": false,
611
+ "single_word": false,
612
+ "special": false
613
+ },
614
+ "76": {
615
+ "content": "</td>",
616
+ "lstrip": false,
617
+ "normalized": false,
618
+ "rstrip": false,
619
+ "single_word": false,
620
+ "special": false
621
+ },
622
+ "77": {
623
+ "content": "0",
624
+ "lstrip": false,
625
+ "normalized": false,
626
+ "rstrip": false,
627
+ "single_word": false,
628
+ "special": false
629
+ },
630
+ "78": {
631
+ "content": "1",
632
+ "lstrip": false,
633
+ "normalized": false,
634
+ "rstrip": false,
635
+ "single_word": false,
636
+ "special": false
637
+ },
638
+ "79": {
639
+ "content": "2",
640
+ "lstrip": false,
641
+ "normalized": false,
642
+ "rstrip": false,
643
+ "single_word": false,
644
+ "special": false
645
+ },
646
+ "80": {
647
+ "content": "3",
648
+ "lstrip": false,
649
+ "normalized": false,
650
+ "rstrip": false,
651
+ "single_word": false,
652
+ "special": false
653
+ },
654
+ "81": {
655
+ "content": "4",
656
+ "lstrip": false,
657
+ "normalized": false,
658
+ "rstrip": false,
659
+ "single_word": false,
660
+ "special": false
661
+ },
662
+ "82": {
663
+ "content": "5",
664
+ "lstrip": false,
665
+ "normalized": false,
666
+ "rstrip": false,
667
+ "single_word": false,
668
+ "special": false
669
+ },
670
+ "83": {
671
+ "content": "6",
672
+ "lstrip": false,
673
+ "normalized": false,
674
+ "rstrip": false,
675
+ "single_word": false,
676
+ "special": false
677
+ },
678
+ "84": {
679
+ "content": "7",
680
+ "lstrip": false,
681
+ "normalized": false,
682
+ "rstrip": false,
683
+ "single_word": false,
684
+ "special": false
685
+ },
686
+ "85": {
687
+ "content": "8",
688
+ "lstrip": false,
689
+ "normalized": false,
690
+ "rstrip": false,
691
+ "single_word": false,
692
+ "special": false
693
+ },
694
+ "86": {
695
+ "content": "9",
696
+ "lstrip": false,
697
+ "normalized": false,
698
+ "rstrip": false,
699
+ "single_word": false,
700
+ "special": false
701
+ },
702
+ "87": {
703
+ "content": "0",
704
+ "lstrip": false,
705
+ "normalized": false,
706
+ "rstrip": false,
707
+ "single_word": false,
708
+ "special": false
709
+ },
710
+ "88": {
711
+ "content": "1",
712
+ "lstrip": false,
713
+ "normalized": false,
714
+ "rstrip": false,
715
+ "single_word": false,
716
+ "special": false
717
+ },
718
+ "89": {
719
+ "content": "2",
720
+ "lstrip": false,
721
+ "normalized": false,
722
+ "rstrip": false,
723
+ "single_word": false,
724
+ "special": false
725
+ },
726
+ "90": {
727
+ "content": "3",
728
+ "lstrip": false,
729
+ "normalized": false,
730
+ "rstrip": false,
731
+ "single_word": false,
732
+ "special": false
733
+ },
734
+ "91": {
735
+ "content": "4",
736
+ "lstrip": false,
737
+ "normalized": false,
738
+ "rstrip": false,
739
+ "single_word": false,
740
+ "special": false
741
+ },
742
+ "92": {
743
+ "content": "5",
744
+ "lstrip": false,
745
+ "normalized": false,
746
+ "rstrip": false,
747
+ "single_word": false,
748
+ "special": false
749
+ },
750
+ "93": {
751
+ "content": "6",
752
+ "lstrip": false,
753
+ "normalized": false,
754
+ "rstrip": false,
755
+ "single_word": false,
756
+ "special": false
757
+ },
758
+ "94": {
759
+ "content": "7",
760
+ "lstrip": false,
761
+ "normalized": false,
762
+ "rstrip": false,
763
+ "single_word": false,
764
+ "special": false
765
+ },
766
+ "95": {
767
+ "content": "8",
768
+ "lstrip": false,
769
+ "normalized": false,
770
+ "rstrip": false,
771
+ "single_word": false,
772
+ "special": false
773
+ },
774
+ "96": {
775
+ "content": "9",
776
+ "lstrip": false,
777
+ "normalized": false,
778
+ "rstrip": false,
779
+ "single_word": false,
780
+ "special": false
781
+ },
782
+ "97": {
783
+ "content": ",",
784
+ "lstrip": false,
785
+ "normalized": false,
786
+ "rstrip": false,
787
+ "single_word": false,
788
+ "special": false
789
+ },
790
+ "98": {
791
+ "content": ".",
792
+ "lstrip": false,
793
+ "normalized": false,
794
+ "rstrip": false,
795
+ "single_word": false,
796
+ "special": false
797
+ },
798
+ "99": {
799
+ "content": "!",
800
+ "lstrip": false,
801
+ "normalized": false,
802
+ "rstrip": false,
803
+ "single_word": false,
804
+ "special": false
805
+ },
806
+ "100": {
807
+ "content": "?",
808
+ "lstrip": false,
809
+ "normalized": false,
810
+ "rstrip": false,
811
+ "single_word": false,
812
+ "special": false
813
+ },
814
+ "101": {
815
+ "content": ",",
816
+ "lstrip": false,
817
+ "normalized": false,
818
+ "rstrip": false,
819
+ "single_word": false,
820
+ "special": false
821
+ },
822
+ "102": {
823
+ "content": "。",
824
+ "lstrip": false,
825
+ "normalized": false,
826
+ "rstrip": false,
827
+ "single_word": false,
828
+ "special": false
829
+ },
830
+ "103": {
831
+ "content": "!",
832
+ "lstrip": false,
833
+ "normalized": false,
834
+ "rstrip": false,
835
+ "single_word": false,
836
+ "special": false
837
+ },
838
+ "104": {
839
+ "content": "?",
840
+ "lstrip": false,
841
+ "normalized": false,
842
+ "rstrip": false,
843
+ "single_word": false,
844
+ "special": false
845
+ },
846
+ "105": {
847
+ "content": "、",
848
+ "lstrip": false,
849
+ "normalized": false,
850
+ "rstrip": false,
851
+ "single_word": false,
852
+ "special": false
853
+ },
854
+ "106": {
855
+ "content": ":",
856
+ "lstrip": false,
857
+ "normalized": false,
858
+ "rstrip": false,
859
+ "single_word": false,
860
+ "special": false
861
+ },
862
+ "107": {
863
+ "content": "¥",
864
+ "lstrip": false,
865
+ "normalized": false,
866
+ "rstrip": false,
867
+ "single_word": false,
868
+ "special": false
869
+ },
870
+ "108": {
871
+ "content": "《",
872
+ "lstrip": false,
873
+ "normalized": false,
874
+ "rstrip": false,
875
+ "single_word": false,
876
+ "special": false
877
+ },
878
+ "109": {
879
+ "content": "》",
880
+ "lstrip": false,
881
+ "normalized": false,
882
+ "rstrip": false,
883
+ "single_word": false,
884
+ "special": false
885
+ },
886
+ "110": {
887
+ "content": "【",
888
+ "lstrip": false,
889
+ "normalized": false,
890
+ "rstrip": false,
891
+ "single_word": false,
892
+ "special": false
893
+ },
894
+ "111": {
895
+ "content": "】",
896
+ "lstrip": false,
897
+ "normalized": false,
898
+ "rstrip": false,
899
+ "single_word": false,
900
+ "special": false
901
+ },
902
+ "112": {
903
+ "content": "『",
904
+ "lstrip": false,
905
+ "normalized": false,
906
+ "rstrip": false,
907
+ "single_word": false,
908
+ "special": false
909
+ },
910
+ "113": {
911
+ "content": "』",
912
+ "lstrip": false,
913
+ "normalized": false,
914
+ "rstrip": false,
915
+ "single_word": false,
916
+ "special": false
917
+ },
918
+ "114": {
919
+ "content": "```",
920
+ "lstrip": false,
921
+ "normalized": false,
922
+ "rstrip": false,
923
+ "single_word": false,
924
+ "special": false
925
+ },
926
+ "115": {
927
+ "content": "<!--",
928
+ "lstrip": false,
929
+ "normalized": false,
930
+ "rstrip": false,
931
+ "single_word": false,
932
+ "special": false
933
+ },
934
+ "116": {
935
+ "content": "-->",
936
+ "lstrip": false,
937
+ "normalized": false,
938
+ "rstrip": false,
939
+ "single_word": false,
940
+ "special": false
941
+ },
942
+ "117": {
943
+ "content": "---",
944
+ "lstrip": false,
945
+ "normalized": false,
946
+ "rstrip": false,
947
+ "single_word": false,
948
+ "special": false
949
+ },
950
+ "118": {
951
+ "content": "<!DOCTYPE>",
952
+ "lstrip": false,
953
+ "normalized": false,
954
+ "rstrip": false,
955
+ "single_word": false,
956
+ "special": false
957
+ },
958
+ "119": {
959
+ "content": "\t\t\t\t\t\t\t\t",
960
+ "lstrip": false,
961
+ "normalized": false,
962
+ "rstrip": false,
963
+ "single_word": false,
964
+ "special": false
965
+ },
966
+ "120": {
967
+ "content": "\t\t\t\t\t\t\t",
968
+ "lstrip": false,
969
+ "normalized": false,
970
+ "rstrip": false,
971
+ "single_word": false,
972
+ "special": false
973
+ },
974
+ "121": {
975
+ "content": "\t\t\t\t\t\t",
976
+ "lstrip": false,
977
+ "normalized": false,
978
+ "rstrip": false,
979
+ "single_word": false,
980
+ "special": false
981
+ },
982
+ "122": {
983
+ "content": "\t\t\t\t\t",
984
+ "lstrip": false,
985
+ "normalized": false,
986
+ "rstrip": false,
987
+ "single_word": false,
988
+ "special": false
989
+ },
990
+ "123": {
991
+ "content": "\t\t\t\t",
992
+ "lstrip": false,
993
+ "normalized": false,
994
+ "rstrip": false,
995
+ "single_word": false,
996
+ "special": false
997
+ },
998
+ "124": {
999
+ "content": "\t\t\t",
1000
+ "lstrip": false,
1001
+ "normalized": false,
1002
+ "rstrip": false,
1003
+ "single_word": false,
1004
+ "special": false
1005
+ },
1006
+ "125": {
1007
+ "content": "\t\t",
1008
+ "lstrip": false,
1009
+ "normalized": false,
1010
+ "rstrip": false,
1011
+ "single_word": false,
1012
+ "special": false
1013
+ },
1014
+ "126": {
1015
+ "content": "\t",
1016
+ "lstrip": false,
1017
+ "normalized": false,
1018
+ "rstrip": false,
1019
+ "single_word": false,
1020
+ "special": false
1021
+ },
1022
+ "127": {
1023
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1024
+ "lstrip": false,
1025
+ "normalized": false,
1026
+ "rstrip": false,
1027
+ "single_word": false,
1028
+ "special": false
1029
+ },
1030
+ "128": {
1031
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1032
+ "lstrip": false,
1033
+ "normalized": false,
1034
+ "rstrip": false,
1035
+ "single_word": false,
1036
+ "special": false
1037
+ },
1038
+ "129": {
1039
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1040
+ "lstrip": false,
1041
+ "normalized": false,
1042
+ "rstrip": false,
1043
+ "single_word": false,
1044
+ "special": false
1045
+ },
1046
+ "130": {
1047
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1048
+ "lstrip": false,
1049
+ "normalized": false,
1050
+ "rstrip": false,
1051
+ "single_word": false,
1052
+ "special": false
1053
+ },
1054
+ "131": {
1055
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1056
+ "lstrip": false,
1057
+ "normalized": false,
1058
+ "rstrip": false,
1059
+ "single_word": false,
1060
+ "special": false
1061
+ },
1062
+ "132": {
1063
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1064
+ "lstrip": false,
1065
+ "normalized": false,
1066
+ "rstrip": false,
1067
+ "single_word": false,
1068
+ "special": false
1069
+ },
1070
+ "133": {
1071
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1072
+ "lstrip": false,
1073
+ "normalized": false,
1074
+ "rstrip": false,
1075
+ "single_word": false,
1076
+ "special": false
1077
+ },
1078
+ "134": {
1079
+ "content": "▁▁▁▁▁▁▁▁▁",
1080
+ "lstrip": false,
1081
+ "normalized": false,
1082
+ "rstrip": false,
1083
+ "single_word": false,
1084
+ "special": false
1085
+ },
1086
+ "135": {
1087
+ "content": "▁▁▁▁▁▁▁▁",
1088
+ "lstrip": false,
1089
+ "normalized": false,
1090
+ "rstrip": false,
1091
+ "single_word": false,
1092
+ "special": false
1093
+ },
1094
+ "136": {
1095
+ "content": "▁▁▁▁▁▁▁",
1096
+ "lstrip": false,
1097
+ "normalized": false,
1098
+ "rstrip": false,
1099
+ "single_word": false,
1100
+ "special": false
1101
+ },
1102
+ "137": {
1103
+ "content": "▁▁▁▁▁▁",
1104
+ "lstrip": false,
1105
+ "normalized": false,
1106
+ "rstrip": false,
1107
+ "single_word": false,
1108
+ "special": false
1109
+ },
1110
+ "138": {
1111
+ "content": "▁▁▁▁▁",
1112
+ "lstrip": false,
1113
+ "normalized": false,
1114
+ "rstrip": false,
1115
+ "single_word": false,
1116
+ "special": false
1117
+ },
1118
+ "139": {
1119
+ "content": "▁▁▁▁",
1120
+ "lstrip": false,
1121
+ "normalized": false,
1122
+ "rstrip": false,
1123
+ "single_word": false,
1124
+ "special": false
1125
+ },
1126
+ "140": {
1127
+ "content": "▁▁▁",
1128
+ "lstrip": false,
1129
+ "normalized": false,
1130
+ "rstrip": false,
1131
+ "single_word": false,
1132
+ "special": false
1133
+ },
1134
+ "141": {
1135
+ "content": "▁▁",
1136
+ "lstrip": false,
1137
+ "normalized": false,
1138
+ "rstrip": false,
1139
+ "single_word": false,
1140
+ "special": false
1141
+ },
1142
+ "142": {
1143
+ "content": "\b",
1144
+ "lstrip": false,
1145
+ "normalized": false,
1146
+ "rstrip": false,
1147
+ "single_word": false,
1148
+ "special": false
1149
+ },
1150
+ "143": {
1151
+ "content": "\r",
1152
+ "lstrip": false,
1153
+ "normalized": false,
1154
+ "rstrip": false,
1155
+ "single_word": false,
1156
+ "special": false
1157
+ },
1158
+ "144": {
1159
+ "content": "\n",
1160
+ "lstrip": false,
1161
+ "normalized": false,
1162
+ "rstrip": false,
1163
+ "single_word": false,
1164
+ "special": false
1165
+ },
1166
+ "145": {
1167
+ "content": "<|unused000|>",
1168
+ "lstrip": false,
1169
+ "normalized": false,
1170
+ "rstrip": false,
1171
+ "single_word": false,
1172
+ "special": false
1173
+ },
1174
+ "146": {
1175
+ "content": "<|unused001|>",
1176
+ "lstrip": false,
1177
+ "normalized": false,
1178
+ "rstrip": false,
1179
+ "single_word": false,
1180
+ "special": false
1181
+ },
1182
+ "147": {
1183
+ "content": "<|unused002|>",
1184
+ "lstrip": false,
1185
+ "normalized": false,
1186
+ "rstrip": false,
1187
+ "single_word": false,
1188
+ "special": false
1189
+ },
1190
+ "148": {
1191
+ "content": "<|unused003|>",
1192
+ "lstrip": false,
1193
+ "normalized": false,
1194
+ "rstrip": false,
1195
+ "single_word": false,
1196
+ "special": false
1197
+ },
1198
+ "149": {
1199
+ "content": "<|unused004|>",
1200
+ "lstrip": false,
1201
+ "normalized": false,
1202
+ "rstrip": false,
1203
+ "single_word": false,
1204
+ "special": false
1205
+ },
1206
+ "150": {
1207
+ "content": "<|unused005|>",
1208
+ "lstrip": false,
1209
+ "normalized": false,
1210
+ "rstrip": false,
1211
+ "single_word": false,
1212
+ "special": false
1213
+ },
1214
+ "151": {
1215
+ "content": "<|unused006|>",
1216
+ "lstrip": false,
1217
+ "normalized": false,
1218
+ "rstrip": false,
1219
+ "single_word": false,
1220
+ "special": false
1221
+ },
1222
+ "152": {
1223
+ "content": "<|unused007|>",
1224
+ "lstrip": false,
1225
+ "normalized": false,
1226
+ "rstrip": false,
1227
+ "single_word": false,
1228
+ "special": false
1229
+ },
1230
+ "153": {
1231
+ "content": "<|unused008|>",
1232
+ "lstrip": false,
1233
+ "normalized": false,
1234
+ "rstrip": false,
1235
+ "single_word": false,
1236
+ "special": false
1237
+ },
1238
+ "154": {
1239
+ "content": "<|unused009|>",
1240
+ "lstrip": false,
1241
+ "normalized": false,
1242
+ "rstrip": false,
1243
+ "single_word": false,
1244
+ "special": false
1245
+ },
1246
+ "155": {
1247
+ "content": "<|unused010|>",
1248
+ "lstrip": false,
1249
+ "normalized": false,
1250
+ "rstrip": false,
1251
+ "single_word": false,
1252
+ "special": false
1253
+ },
1254
+ "156": {
1255
+ "content": "<|unused011|>",
1256
+ "lstrip": false,
1257
+ "normalized": false,
1258
+ "rstrip": false,
1259
+ "single_word": false,
1260
+ "special": false
1261
+ },
1262
+ "157": {
1263
+ "content": "<|unused012|>",
1264
+ "lstrip": false,
1265
+ "normalized": false,
1266
+ "rstrip": false,
1267
+ "single_word": false,
1268
+ "special": false
1269
+ },
1270
+ "158": {
1271
+ "content": "<|unused013|>",
1272
+ "lstrip": false,
1273
+ "normalized": false,
1274
+ "rstrip": false,
1275
+ "single_word": false,
1276
+ "special": false
1277
+ },
1278
+ "159": {
1279
+ "content": "<|unused014|>",
1280
+ "lstrip": false,
1281
+ "normalized": false,
1282
+ "rstrip": false,
1283
+ "single_word": false,
1284
+ "special": false
1285
+ },
1286
+ "160": {
1287
+ "content": "<|unused015|>",
1288
+ "lstrip": false,
1289
+ "normalized": false,
1290
+ "rstrip": false,
1291
+ "single_word": false,
1292
+ "special": false
1293
+ },
1294
+ "161": {
1295
+ "content": "<|unused016|>",
1296
+ "lstrip": false,
1297
+ "normalized": false,
1298
+ "rstrip": false,
1299
+ "single_word": false,
1300
+ "special": false
1301
+ },
1302
+ "162": {
1303
+ "content": "<|unused017|>",
1304
+ "lstrip": false,
1305
+ "normalized": false,
1306
+ "rstrip": false,
1307
+ "single_word": false,
1308
+ "special": false
1309
+ },
1310
+ "163": {
1311
+ "content": "<|unused018|>",
1312
+ "lstrip": false,
1313
+ "normalized": false,
1314
+ "rstrip": false,
1315
+ "single_word": false,
1316
+ "special": false
1317
+ },
1318
+ "164": {
1319
+ "content": "<|unused019|>",
1320
+ "lstrip": false,
1321
+ "normalized": false,
1322
+ "rstrip": false,
1323
+ "single_word": false,
1324
+ "special": false
1325
+ },
1326
+ "165": {
1327
+ "content": "<|unused020|>",
1328
+ "lstrip": false,
1329
+ "normalized": false,
1330
+ "rstrip": false,
1331
+ "single_word": false,
1332
+ "special": false
1333
+ },
1334
+ "166": {
1335
+ "content": "<|unused021|>",
1336
+ "lstrip": false,
1337
+ "normalized": false,
1338
+ "rstrip": false,
1339
+ "single_word": false,
1340
+ "special": false
1341
+ },
1342
+ "167": {
1343
+ "content": "<|unused022|>",
1344
+ "lstrip": false,
1345
+ "normalized": false,
1346
+ "rstrip": false,
1347
+ "single_word": false,
1348
+ "special": false
1349
+ },
1350
+ "168": {
1351
+ "content": "<|unused023|>",
1352
+ "lstrip": false,
1353
+ "normalized": false,
1354
+ "rstrip": false,
1355
+ "single_word": false,
1356
+ "special": false
1357
+ },
1358
+ "169": {
1359
+ "content": "<|unused024|>",
1360
+ "lstrip": false,
1361
+ "normalized": false,
1362
+ "rstrip": false,
1363
+ "single_word": false,
1364
+ "special": false
1365
+ },
1366
+ "170": {
1367
+ "content": "<|unused025|>",
1368
+ "lstrip": false,
1369
+ "normalized": false,
1370
+ "rstrip": false,
1371
+ "single_word": false,
1372
+ "special": false
1373
+ },
1374
+ "171": {
1375
+ "content": "<|unused026|>",
1376
+ "lstrip": false,
1377
+ "normalized": false,
1378
+ "rstrip": false,
1379
+ "single_word": false,
1380
+ "special": false
1381
+ },
1382
+ "172": {
1383
+ "content": "<|unused027|>",
1384
+ "lstrip": false,
1385
+ "normalized": false,
1386
+ "rstrip": false,
1387
+ "single_word": false,
1388
+ "special": false
1389
+ },
1390
+ "173": {
1391
+ "content": "<|unused028|>",
1392
+ "lstrip": false,
1393
+ "normalized": false,
1394
+ "rstrip": false,
1395
+ "single_word": false,
1396
+ "special": false
1397
+ },
1398
+ "174": {
1399
+ "content": "<|unused029|>",
1400
+ "lstrip": false,
1401
+ "normalized": false,
1402
+ "rstrip": false,
1403
+ "single_word": false,
1404
+ "special": false
1405
+ },
1406
+ "175": {
1407
+ "content": "<|unused030|>",
1408
+ "lstrip": false,
1409
+ "normalized": false,
1410
+ "rstrip": false,
1411
+ "single_word": false,
1412
+ "special": false
1413
+ },
1414
+ "176": {
1415
+ "content": "<|unused031|>",
1416
+ "lstrip": false,
1417
+ "normalized": false,
1418
+ "rstrip": false,
1419
+ "single_word": false,
1420
+ "special": false
1421
+ },
1422
+ "177": {
1423
+ "content": "<|unused032|>",
1424
+ "lstrip": false,
1425
+ "normalized": false,
1426
+ "rstrip": false,
1427
+ "single_word": false,
1428
+ "special": false
1429
+ },
1430
+ "178": {
1431
+ "content": "<|unused033|>",
1432
+ "lstrip": false,
1433
+ "normalized": false,
1434
+ "rstrip": false,
1435
+ "single_word": false,
1436
+ "special": false
1437
+ },
1438
+ "179": {
1439
+ "content": "<|unused034|>",
1440
+ "lstrip": false,
1441
+ "normalized": false,
1442
+ "rstrip": false,
1443
+ "single_word": false,
1444
+ "special": false
1445
+ },
1446
+ "180": {
1447
+ "content": "<|unused035|>",
1448
+ "lstrip": false,
1449
+ "normalized": false,
1450
+ "rstrip": false,
1451
+ "single_word": false,
1452
+ "special": false
1453
+ },
1454
+ "181": {
1455
+ "content": "<|unused036|>",
1456
+ "lstrip": false,
1457
+ "normalized": false,
1458
+ "rstrip": false,
1459
+ "single_word": false,
1460
+ "special": false
1461
+ },
1462
+ "182": {
1463
+ "content": "<|unused037|>",
1464
+ "lstrip": false,
1465
+ "normalized": false,
1466
+ "rstrip": false,
1467
+ "single_word": false,
1468
+ "special": false
1469
+ },
1470
+ "183": {
1471
+ "content": "<|unused038|>",
1472
+ "lstrip": false,
1473
+ "normalized": false,
1474
+ "rstrip": false,
1475
+ "single_word": false,
1476
+ "special": false
1477
+ },
1478
+ "184": {
1479
+ "content": "<|unused039|>",
1480
+ "lstrip": false,
1481
+ "normalized": false,
1482
+ "rstrip": false,
1483
+ "single_word": false,
1484
+ "special": false
1485
+ },
1486
+ "185": {
1487
+ "content": "<|unused040|>",
1488
+ "lstrip": false,
1489
+ "normalized": false,
1490
+ "rstrip": false,
1491
+ "single_word": false,
1492
+ "special": false
1493
+ },
1494
+ "186": {
1495
+ "content": "<|unused041|>",
1496
+ "lstrip": false,
1497
+ "normalized": false,
1498
+ "rstrip": false,
1499
+ "single_word": false,
1500
+ "special": false
1501
+ },
1502
+ "187": {
1503
+ "content": "<|unused042|>",
1504
+ "lstrip": false,
1505
+ "normalized": false,
1506
+ "rstrip": false,
1507
+ "single_word": false,
1508
+ "special": false
1509
+ },
1510
+ "188": {
1511
+ "content": "<|unused043|>",
1512
+ "lstrip": false,
1513
+ "normalized": false,
1514
+ "rstrip": false,
1515
+ "single_word": false,
1516
+ "special": false
1517
+ },
1518
+ "189": {
1519
+ "content": "<|unused044|>",
1520
+ "lstrip": false,
1521
+ "normalized": false,
1522
+ "rstrip": false,
1523
+ "single_word": false,
1524
+ "special": false
1525
+ },
1526
+ "190": {
1527
+ "content": "<|unused045|>",
1528
+ "lstrip": false,
1529
+ "normalized": false,
1530
+ "rstrip": false,
1531
+ "single_word": false,
1532
+ "special": false
1533
+ },
1534
+ "191": {
1535
+ "content": "<|unused046|>",
1536
+ "lstrip": false,
1537
+ "normalized": false,
1538
+ "rstrip": false,
1539
+ "single_word": false,
1540
+ "special": false
1541
+ },
1542
+ "192": {
1543
+ "content": "<|unused047|>",
1544
+ "lstrip": false,
1545
+ "normalized": false,
1546
+ "rstrip": false,
1547
+ "single_word": false,
1548
+ "special": false
1549
+ },
1550
+ "193": {
1551
+ "content": "<|unused048|>",
1552
+ "lstrip": false,
1553
+ "normalized": false,
1554
+ "rstrip": false,
1555
+ "single_word": false,
1556
+ "special": false
1557
+ },
1558
+ "194": {
1559
+ "content": "<|unused049|>",
1560
+ "lstrip": false,
1561
+ "normalized": false,
1562
+ "rstrip": false,
1563
+ "single_word": false,
1564
+ "special": false
1565
+ },
1566
+ "195": {
1567
+ "content": "<|unused050|>",
1568
+ "lstrip": false,
1569
+ "normalized": false,
1570
+ "rstrip": false,
1571
+ "single_word": false,
1572
+ "special": false
1573
+ },
1574
+ "196": {
1575
+ "content": "<|unused051|>",
1576
+ "lstrip": false,
1577
+ "normalized": false,
1578
+ "rstrip": false,
1579
+ "single_word": false,
1580
+ "special": false
1581
+ },
1582
+ "197": {
1583
+ "content": "<|unused052|>",
1584
+ "lstrip": false,
1585
+ "normalized": false,
1586
+ "rstrip": false,
1587
+ "single_word": false,
1588
+ "special": false
1589
+ },
1590
+ "198": {
1591
+ "content": "<|unused053|>",
1592
+ "lstrip": false,
1593
+ "normalized": false,
1594
+ "rstrip": false,
1595
+ "single_word": false,
1596
+ "special": false
1597
+ },
1598
+ "199": {
1599
+ "content": "<|unused054|>",
1600
+ "lstrip": false,
1601
+ "normalized": false,
1602
+ "rstrip": false,
1603
+ "single_word": false,
1604
+ "special": false
1605
+ },
1606
+ "200": {
1607
+ "content": "<|unused055|>",
1608
+ "lstrip": false,
1609
+ "normalized": false,
1610
+ "rstrip": false,
1611
+ "single_word": false,
1612
+ "special": false
1613
+ },
1614
+ "201": {
1615
+ "content": "<|unused056|>",
1616
+ "lstrip": false,
1617
+ "normalized": false,
1618
+ "rstrip": false,
1619
+ "single_word": false,
1620
+ "special": false
1621
+ },
1622
+ "202": {
1623
+ "content": "<|unused057|>",
1624
+ "lstrip": false,
1625
+ "normalized": false,
1626
+ "rstrip": false,
1627
+ "single_word": false,
1628
+ "special": false
1629
+ },
1630
+ "203": {
1631
+ "content": "<|unused058|>",
1632
+ "lstrip": false,
1633
+ "normalized": false,
1634
+ "rstrip": false,
1635
+ "single_word": false,
1636
+ "special": false
1637
+ },
1638
+ "204": {
1639
+ "content": "<|unused059|>",
1640
+ "lstrip": false,
1641
+ "normalized": false,
1642
+ "rstrip": false,
1643
+ "single_word": false,
1644
+ "special": false
1645
+ },
1646
+ "205": {
1647
+ "content": "<|unused060|>",
1648
+ "lstrip": false,
1649
+ "normalized": false,
1650
+ "rstrip": false,
1651
+ "single_word": false,
1652
+ "special": false
1653
+ },
1654
+ "206": {
1655
+ "content": "<|unused061|>",
1656
+ "lstrip": false,
1657
+ "normalized": false,
1658
+ "rstrip": false,
1659
+ "single_word": false,
1660
+ "special": false
1661
+ },
1662
+ "207": {
1663
+ "content": "<|unused062|>",
1664
+ "lstrip": false,
1665
+ "normalized": false,
1666
+ "rstrip": false,
1667
+ "single_word": false,
1668
+ "special": false
1669
+ },
1670
+ "208": {
1671
+ "content": "<|unused063|>",
1672
+ "lstrip": false,
1673
+ "normalized": false,
1674
+ "rstrip": false,
1675
+ "single_word": false,
1676
+ "special": false
1677
+ },
1678
+ "209": {
1679
+ "content": "<|unused064|>",
1680
+ "lstrip": false,
1681
+ "normalized": false,
1682
+ "rstrip": false,
1683
+ "single_word": false,
1684
+ "special": false
1685
+ },
1686
+ "210": {
1687
+ "content": "<|unused065|>",
1688
+ "lstrip": false,
1689
+ "normalized": false,
1690
+ "rstrip": false,
1691
+ "single_word": false,
1692
+ "special": false
1693
+ },
1694
+ "211": {
1695
+ "content": "<|unused066|>",
1696
+ "lstrip": false,
1697
+ "normalized": false,
1698
+ "rstrip": false,
1699
+ "single_word": false,
1700
+ "special": false
1701
+ },
1702
+ "212": {
1703
+ "content": "<|unused067|>",
1704
+ "lstrip": false,
1705
+ "normalized": false,
1706
+ "rstrip": false,
1707
+ "single_word": false,
1708
+ "special": false
1709
+ },
1710
+ "213": {
1711
+ "content": "<|unused068|>",
1712
+ "lstrip": false,
1713
+ "normalized": false,
1714
+ "rstrip": false,
1715
+ "single_word": false,
1716
+ "special": false
1717
+ },
1718
+ "214": {
1719
+ "content": "<|unused069|>",
1720
+ "lstrip": false,
1721
+ "normalized": false,
1722
+ "rstrip": false,
1723
+ "single_word": false,
1724
+ "special": false
1725
+ },
1726
+ "215": {
1727
+ "content": "<|unused070|>",
1728
+ "lstrip": false,
1729
+ "normalized": false,
1730
+ "rstrip": false,
1731
+ "single_word": false,
1732
+ "special": false
1733
+ },
1734
+ "216": {
1735
+ "content": "<|unused071|>",
1736
+ "lstrip": false,
1737
+ "normalized": false,
1738
+ "rstrip": false,
1739
+ "single_word": false,
1740
+ "special": false
1741
+ },
1742
+ "217": {
1743
+ "content": "<|unused072|>",
1744
+ "lstrip": false,
1745
+ "normalized": false,
1746
+ "rstrip": false,
1747
+ "single_word": false,
1748
+ "special": false
1749
+ },
1750
+ "218": {
1751
+ "content": "<|unused073|>",
1752
+ "lstrip": false,
1753
+ "normalized": false,
1754
+ "rstrip": false,
1755
+ "single_word": false,
1756
+ "special": false
1757
+ },
1758
+ "219": {
1759
+ "content": "<|unused074|>",
1760
+ "lstrip": false,
1761
+ "normalized": false,
1762
+ "rstrip": false,
1763
+ "single_word": false,
1764
+ "special": false
1765
+ },
1766
+ "220": {
1767
+ "content": "<|unused075|>",
1768
+ "lstrip": false,
1769
+ "normalized": false,
1770
+ "rstrip": false,
1771
+ "single_word": false,
1772
+ "special": false
1773
+ },
1774
+ "221": {
1775
+ "content": "<|unused076|>",
1776
+ "lstrip": false,
1777
+ "normalized": false,
1778
+ "rstrip": false,
1779
+ "single_word": false,
1780
+ "special": false
1781
+ },
1782
+ "222": {
1783
+ "content": "<|unused077|>",
1784
+ "lstrip": false,
1785
+ "normalized": false,
1786
+ "rstrip": false,
1787
+ "single_word": false,
1788
+ "special": false
1789
+ },
1790
+ "223": {
1791
+ "content": "<|unused078|>",
1792
+ "lstrip": false,
1793
+ "normalized": false,
1794
+ "rstrip": false,
1795
+ "single_word": false,
1796
+ "special": false
1797
+ },
1798
+ "224": {
1799
+ "content": "<|unused079|>",
1800
+ "lstrip": false,
1801
+ "normalized": false,
1802
+ "rstrip": false,
1803
+ "single_word": false,
1804
+ "special": false
1805
+ },
1806
+ "225": {
1807
+ "content": "<|unused080|>",
1808
+ "lstrip": false,
1809
+ "normalized": false,
1810
+ "rstrip": false,
1811
+ "single_word": false,
1812
+ "special": false
1813
+ },
1814
+ "226": {
1815
+ "content": "<|unused081|>",
1816
+ "lstrip": false,
1817
+ "normalized": false,
1818
+ "rstrip": false,
1819
+ "single_word": false,
1820
+ "special": false
1821
+ },
1822
+ "227": {
1823
+ "content": "<|unused082|>",
1824
+ "lstrip": false,
1825
+ "normalized": false,
1826
+ "rstrip": false,
1827
+ "single_word": false,
1828
+ "special": false
1829
+ },
1830
+ "228": {
1831
+ "content": "<|unused083|>",
1832
+ "lstrip": false,
1833
+ "normalized": false,
1834
+ "rstrip": false,
1835
+ "single_word": false,
1836
+ "special": false
1837
+ },
1838
+ "229": {
1839
+ "content": "<|unused084|>",
1840
+ "lstrip": false,
1841
+ "normalized": false,
1842
+ "rstrip": false,
1843
+ "single_word": false,
1844
+ "special": false
1845
+ },
1846
+ "230": {
1847
+ "content": "<|unused085|>",
1848
+ "lstrip": false,
1849
+ "normalized": false,
1850
+ "rstrip": false,
1851
+ "single_word": false,
1852
+ "special": false
1853
+ },
1854
+ "231": {
1855
+ "content": "<|unused086|>",
1856
+ "lstrip": false,
1857
+ "normalized": false,
1858
+ "rstrip": false,
1859
+ "single_word": false,
1860
+ "special": false
1861
+ },
1862
+ "232": {
1863
+ "content": "<|unused087|>",
1864
+ "lstrip": false,
1865
+ "normalized": false,
1866
+ "rstrip": false,
1867
+ "single_word": false,
1868
+ "special": false
1869
+ },
1870
+ "233": {
1871
+ "content": "<|unused088|>",
1872
+ "lstrip": false,
1873
+ "normalized": false,
1874
+ "rstrip": false,
1875
+ "single_word": false,
1876
+ "special": false
1877
+ },
1878
+ "234": {
1879
+ "content": "<|unused089|>",
1880
+ "lstrip": false,
1881
+ "normalized": false,
1882
+ "rstrip": false,
1883
+ "single_word": false,
1884
+ "special": false
1885
+ },
1886
+ "235": {
1887
+ "content": "<|unused090|>",
1888
+ "lstrip": false,
1889
+ "normalized": false,
1890
+ "rstrip": false,
1891
+ "single_word": false,
1892
+ "special": false
1893
+ },
1894
+ "236": {
1895
+ "content": "<|unused091|>",
1896
+ "lstrip": false,
1897
+ "normalized": false,
1898
+ "rstrip": false,
1899
+ "single_word": false,
1900
+ "special": false
1901
+ },
1902
+ "237": {
1903
+ "content": "<|unused092|>",
1904
+ "lstrip": false,
1905
+ "normalized": false,
1906
+ "rstrip": false,
1907
+ "single_word": false,
1908
+ "special": false
1909
+ },
1910
+ "238": {
1911
+ "content": "<|unused093|>",
1912
+ "lstrip": false,
1913
+ "normalized": false,
1914
+ "rstrip": false,
1915
+ "single_word": false,
1916
+ "special": false
1917
+ },
1918
+ "239": {
1919
+ "content": "<|unused094|>",
1920
+ "lstrip": false,
1921
+ "normalized": false,
1922
+ "rstrip": false,
1923
+ "single_word": false,
1924
+ "special": false
1925
+ },
1926
+ "240": {
1927
+ "content": "<|unused095|>",
1928
+ "lstrip": false,
1929
+ "normalized": false,
1930
+ "rstrip": false,
1931
+ "single_word": false,
1932
+ "special": false
1933
+ },
1934
+ "241": {
1935
+ "content": "<|unused096|>",
1936
+ "lstrip": false,
1937
+ "normalized": false,
1938
+ "rstrip": false,
1939
+ "single_word": false,
1940
+ "special": false
1941
+ },
1942
+ "242": {
1943
+ "content": "<|unused097|>",
1944
+ "lstrip": false,
1945
+ "normalized": false,
1946
+ "rstrip": false,
1947
+ "single_word": false,
1948
+ "special": false
1949
+ },
1950
+ "243": {
1951
+ "content": "<|unused098|>",
1952
+ "lstrip": false,
1953
+ "normalized": false,
1954
+ "rstrip": false,
1955
+ "single_word": false,
1956
+ "special": false
1957
+ },
1958
+ "244": {
1959
+ "content": "<|unused099|>",
1960
+ "lstrip": false,
1961
+ "normalized": false,
1962
+ "rstrip": false,
1963
+ "single_word": false,
1964
+ "special": false
1965
+ },
1966
+ "245": {
1967
+ "content": "<|unused100|>",
1968
+ "lstrip": false,
1969
+ "normalized": false,
1970
+ "rstrip": false,
1971
+ "single_word": false,
1972
+ "special": false
1973
+ },
1974
+ "246": {
1975
+ "content": "<|unused101|>",
1976
+ "lstrip": false,
1977
+ "normalized": false,
1978
+ "rstrip": false,
1979
+ "single_word": false,
1980
+ "special": false
1981
+ },
1982
+ "247": {
1983
+ "content": "<|unused102|>",
1984
+ "lstrip": false,
1985
+ "normalized": false,
1986
+ "rstrip": false,
1987
+ "single_word": false,
1988
+ "special": false
1989
+ },
1990
+ "248": {
1991
+ "content": "<|unused103|>",
1992
+ "lstrip": false,
1993
+ "normalized": false,
1994
+ "rstrip": false,
1995
+ "single_word": false,
1996
+ "special": false
1997
+ },
1998
+ "249": {
1999
+ "content": "<|unused104|>",
2000
+ "lstrip": false,
2001
+ "normalized": false,
2002
+ "rstrip": false,
2003
+ "single_word": false,
2004
+ "special": false
2005
+ },
2006
+ "250": {
2007
+ "content": "<|unused105|>",
2008
+ "lstrip": false,
2009
+ "normalized": false,
2010
+ "rstrip": false,
2011
+ "single_word": false,
2012
+ "special": false
2013
+ },
2014
+ "251": {
2015
+ "content": "<|unused106|>",
2016
+ "lstrip": false,
2017
+ "normalized": false,
2018
+ "rstrip": false,
2019
+ "single_word": false,
2020
+ "special": false
2021
+ },
2022
+ "252": {
2023
+ "content": "<|unused107|>",
2024
+ "lstrip": false,
2025
+ "normalized": false,
2026
+ "rstrip": false,
2027
+ "single_word": false,
2028
+ "special": false
2029
+ },
2030
+ "253": {
2031
+ "content": "<|unused108|>",
2032
+ "lstrip": false,
2033
+ "normalized": false,
2034
+ "rstrip": false,
2035
+ "single_word": false,
2036
+ "special": false
2037
+ },
2038
+ "254": {
2039
+ "content": "<|unused109|>",
2040
+ "lstrip": false,
2041
+ "normalized": false,
2042
+ "rstrip": false,
2043
+ "single_word": false,
2044
+ "special": false
2045
+ },
2046
+ "255": {
2047
+ "content": "<|unused110|>",
2048
+ "lstrip": false,
2049
+ "normalized": false,
2050
+ "rstrip": false,
2051
+ "single_word": false,
2052
+ "special": false
2053
+ },
2054
+ "256": {
2055
+ "content": "<|unused111|>",
2056
+ "lstrip": false,
2057
+ "normalized": false,
2058
+ "rstrip": false,
2059
+ "single_word": false,
2060
+ "special": false
2061
+ },
2062
+ "257": {
2063
+ "content": "<|unused112|>",
2064
+ "lstrip": false,
2065
+ "normalized": false,
2066
+ "rstrip": false,
2067
+ "single_word": false,
2068
+ "special": false
2069
+ },
2070
+ "258": {
2071
+ "content": "<|unused113|>",
2072
+ "lstrip": false,
2073
+ "normalized": false,
2074
+ "rstrip": false,
2075
+ "single_word": false,
2076
+ "special": false
2077
+ },
2078
+ "259": {
2079
+ "content": "<|unused114|>",
2080
+ "lstrip": false,
2081
+ "normalized": false,
2082
+ "rstrip": false,
2083
+ "single_word": false,
2084
+ "special": false
2085
+ },
2086
+ "260": {
2087
+ "content": "<|unused115|>",
2088
+ "lstrip": false,
2089
+ "normalized": false,
2090
+ "rstrip": false,
2091
+ "single_word": false,
2092
+ "special": false
2093
+ },
2094
+ "261": {
2095
+ "content": "<|unused116|>",
2096
+ "lstrip": false,
2097
+ "normalized": false,
2098
+ "rstrip": false,
2099
+ "single_word": false,
2100
+ "special": false
2101
+ },
2102
+ "262": {
2103
+ "content": "<|unused117|>",
2104
+ "lstrip": false,
2105
+ "normalized": false,
2106
+ "rstrip": false,
2107
+ "single_word": false,
2108
+ "special": false
2109
+ },
2110
+ "263": {
2111
+ "content": "<|unused118|>",
2112
+ "lstrip": false,
2113
+ "normalized": false,
2114
+ "rstrip": false,
2115
+ "single_word": false,
2116
+ "special": false
2117
+ },
2118
+ "264": {
2119
+ "content": "<|unused119|>",
2120
+ "lstrip": false,
2121
+ "normalized": false,
2122
+ "rstrip": false,
2123
+ "single_word": false,
2124
+ "special": false
2125
+ },
2126
+ "265": {
2127
+ "content": "<|unused120|>",
2128
+ "lstrip": false,
2129
+ "normalized": false,
2130
+ "rstrip": false,
2131
+ "single_word": false,
2132
+ "special": false
2133
+ },
2134
+ "266": {
2135
+ "content": "<|unused121|>",
2136
+ "lstrip": false,
2137
+ "normalized": false,
2138
+ "rstrip": false,
2139
+ "single_word": false,
2140
+ "special": false
2141
+ },
2142
+ "267": {
2143
+ "content": "<|unused122|>",
2144
+ "lstrip": false,
2145
+ "normalized": false,
2146
+ "rstrip": false,
2147
+ "single_word": false,
2148
+ "special": false
2149
+ },
2150
+ "268": {
2151
+ "content": "<|unused123|>",
2152
+ "lstrip": false,
2153
+ "normalized": false,
2154
+ "rstrip": false,
2155
+ "single_word": false,
2156
+ "special": false
2157
+ },
2158
+ "269": {
2159
+ "content": "<|unused124|>",
2160
+ "lstrip": false,
2161
+ "normalized": false,
2162
+ "rstrip": false,
2163
+ "single_word": false,
2164
+ "special": false
2165
+ },
2166
+ "270": {
2167
+ "content": "<|unused125|>",
2168
+ "lstrip": false,
2169
+ "normalized": false,
2170
+ "rstrip": false,
2171
+ "single_word": false,
2172
+ "special": false
2173
+ },
2174
+ "271": {
2175
+ "content": "<|unused126|>",
2176
+ "lstrip": false,
2177
+ "normalized": false,
2178
+ "rstrip": false,
2179
+ "single_word": false,
2180
+ "special": false
2181
+ },
2182
+ "272": {
2183
+ "content": "<|unused127|>",
2184
+ "lstrip": false,
2185
+ "normalized": false,
2186
+ "rstrip": false,
2187
+ "single_word": false,
2188
+ "special": false
2189
+ },
2190
+ "273": {
2191
+ "content": "<|unused128|>",
2192
+ "lstrip": false,
2193
+ "normalized": false,
2194
+ "rstrip": false,
2195
+ "single_word": false,
2196
+ "special": false
2197
+ },
2198
+ "274": {
2199
+ "content": "<|unused129|>",
2200
+ "lstrip": false,
2201
+ "normalized": false,
2202
+ "rstrip": false,
2203
+ "single_word": false,
2204
+ "special": false
2205
+ },
2206
+ "275": {
2207
+ "content": "<|unused130|>",
2208
+ "lstrip": false,
2209
+ "normalized": false,
2210
+ "rstrip": false,
2211
+ "single_word": false,
2212
+ "special": false
2213
+ },
2214
+ "276": {
2215
+ "content": "<|unused131|>",
2216
+ "lstrip": false,
2217
+ "normalized": false,
2218
+ "rstrip": false,
2219
+ "single_word": false,
2220
+ "special": false
2221
+ },
2222
+ "277": {
2223
+ "content": "<|unused132|>",
2224
+ "lstrip": false,
2225
+ "normalized": false,
2226
+ "rstrip": false,
2227
+ "single_word": false,
2228
+ "special": false
2229
+ },
2230
+ "278": {
2231
+ "content": "<|unused133|>",
2232
+ "lstrip": false,
2233
+ "normalized": false,
2234
+ "rstrip": false,
2235
+ "single_word": false,
2236
+ "special": false
2237
+ },
2238
+ "279": {
2239
+ "content": "<|unused134|>",
2240
+ "lstrip": false,
2241
+ "normalized": false,
2242
+ "rstrip": false,
2243
+ "single_word": false,
2244
+ "special": false
2245
+ },
2246
+ "280": {
2247
+ "content": "<|unused135|>",
2248
+ "lstrip": false,
2249
+ "normalized": false,
2250
+ "rstrip": false,
2251
+ "single_word": false,
2252
+ "special": false
2253
+ },
2254
+ "281": {
2255
+ "content": "<|unused136|>",
2256
+ "lstrip": false,
2257
+ "normalized": false,
2258
+ "rstrip": false,
2259
+ "single_word": false,
2260
+ "special": false
2261
+ },
2262
+ "282": {
2263
+ "content": "<|unused137|>",
2264
+ "lstrip": false,
2265
+ "normalized": false,
2266
+ "rstrip": false,
2267
+ "single_word": false,
2268
+ "special": false
2269
+ },
2270
+ "283": {
2271
+ "content": "<|unused138|>",
2272
+ "lstrip": false,
2273
+ "normalized": false,
2274
+ "rstrip": false,
2275
+ "single_word": false,
2276
+ "special": false
2277
+ },
2278
+ "284": {
2279
+ "content": "<|unused139|>",
2280
+ "lstrip": false,
2281
+ "normalized": false,
2282
+ "rstrip": false,
2283
+ "single_word": false,
2284
+ "special": false
2285
+ },
2286
+ "285": {
2287
+ "content": "<|unused140|>",
2288
+ "lstrip": false,
2289
+ "normalized": false,
2290
+ "rstrip": false,
2291
+ "single_word": false,
2292
+ "special": false
2293
+ },
2294
+ "286": {
2295
+ "content": "<|unused141|>",
2296
+ "lstrip": false,
2297
+ "normalized": false,
2298
+ "rstrip": false,
2299
+ "single_word": false,
2300
+ "special": false
2301
+ },
2302
+ "287": {
2303
+ "content": "<|unused142|>",
2304
+ "lstrip": false,
2305
+ "normalized": false,
2306
+ "rstrip": false,
2307
+ "single_word": false,
2308
+ "special": false
2309
+ },
2310
+ "288": {
2311
+ "content": "<|unused143|>",
2312
+ "lstrip": false,
2313
+ "normalized": false,
2314
+ "rstrip": false,
2315
+ "single_word": false,
2316
+ "special": false
2317
+ },
2318
+ "289": {
2319
+ "content": "<|unused144|>",
2320
+ "lstrip": false,
2321
+ "normalized": false,
2322
+ "rstrip": false,
2323
+ "single_word": false,
2324
+ "special": false
2325
+ },
2326
+ "290": {
2327
+ "content": "<|unused145|>",
2328
+ "lstrip": false,
2329
+ "normalized": false,
2330
+ "rstrip": false,
2331
+ "single_word": false,
2332
+ "special": false
2333
+ },
2334
+ "291": {
2335
+ "content": "<|unused146|>",
2336
+ "lstrip": false,
2337
+ "normalized": false,
2338
+ "rstrip": false,
2339
+ "single_word": false,
2340
+ "special": false
2341
+ },
2342
+ "292": {
2343
+ "content": "<|unused147|>",
2344
+ "lstrip": false,
2345
+ "normalized": false,
2346
+ "rstrip": false,
2347
+ "single_word": false,
2348
+ "special": false
2349
+ },
2350
+ "293": {
2351
+ "content": "<|unused148|>",
2352
+ "lstrip": false,
2353
+ "normalized": false,
2354
+ "rstrip": false,
2355
+ "single_word": false,
2356
+ "special": false
2357
+ },
2358
+ "294": {
2359
+ "content": "<|unused149|>",
2360
+ "lstrip": false,
2361
+ "normalized": false,
2362
+ "rstrip": false,
2363
+ "single_word": false,
2364
+ "special": false
2365
+ },
2366
+ "295": {
2367
+ "content": "<|unused150|>",
2368
+ "lstrip": false,
2369
+ "normalized": false,
2370
+ "rstrip": false,
2371
+ "single_word": false,
2372
+ "special": false
2373
+ },
2374
+ "296": {
2375
+ "content": "<|unused151|>",
2376
+ "lstrip": false,
2377
+ "normalized": false,
2378
+ "rstrip": false,
2379
+ "single_word": false,
2380
+ "special": false
2381
+ },
2382
+ "297": {
2383
+ "content": "<|unused152|>",
2384
+ "lstrip": false,
2385
+ "normalized": false,
2386
+ "rstrip": false,
2387
+ "single_word": false,
2388
+ "special": false
2389
+ },
2390
+ "298": {
2391
+ "content": "<|unused153|>",
2392
+ "lstrip": false,
2393
+ "normalized": false,
2394
+ "rstrip": false,
2395
+ "single_word": false,
2396
+ "special": false
2397
+ },
2398
+ "299": {
2399
+ "content": "<|unused154|>",
2400
+ "lstrip": false,
2401
+ "normalized": false,
2402
+ "rstrip": false,
2403
+ "single_word": false,
2404
+ "special": false
2405
+ },
2406
+ "300": {
2407
+ "content": "<|unused155|>",
2408
+ "lstrip": false,
2409
+ "normalized": false,
2410
+ "rstrip": false,
2411
+ "single_word": false,
2412
+ "special": false
2413
+ },
2414
+ "301": {
2415
+ "content": "<|unused156|>",
2416
+ "lstrip": false,
2417
+ "normalized": false,
2418
+ "rstrip": false,
2419
+ "single_word": false,
2420
+ "special": false
2421
+ },
2422
+ "302": {
2423
+ "content": "<|unused157|>",
2424
+ "lstrip": false,
2425
+ "normalized": false,
2426
+ "rstrip": false,
2427
+ "single_word": false,
2428
+ "special": false
2429
+ },
2430
+ "303": {
2431
+ "content": "<|unused158|>",
2432
+ "lstrip": false,
2433
+ "normalized": false,
2434
+ "rstrip": false,
2435
+ "single_word": false,
2436
+ "special": false
2437
+ },
2438
+ "304": {
2439
+ "content": "<|unused159|>",
2440
+ "lstrip": false,
2441
+ "normalized": false,
2442
+ "rstrip": false,
2443
+ "single_word": false,
2444
+ "special": false
2445
+ }
2446
+ },
2447
+ "additional_special_tokens": [
2448
+ "<|im_start|>",
2449
+ "<|im_end|>",
2450
+ "<|im_sep|>"
2451
+ ],
2452
+ "bos_token": "<|startoftext|>",
2453
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message + '\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ 'Human: ' + content + '\nAssistant:' }}{% elif message['role'] == 'assistant' %}{{ content + '<|endoftext|>' + '\n' }}{% endif %}{% endfor %}",
2454
+ "clean_up_tokenization_spaces": false,
2455
+ "eos_token": "<|endoftext|>",
2456
+ "legacy": true,
2457
+ "model_max_length": 4096,
2458
+ "pad_token": "<unk>",
2459
+ "padding_side": "right",
2460
+ "sp_model_kwargs": {},
2461
+ "spaces_between_special_tokens": false,
2462
+ "split_special_tokens": false,
2463
+ "tokenizer_class": "LlamaTokenizer",
2464
+ "unk_token": "<unk>",
2465
+ "use_default_system_prompt": true
2466
+ }
checkpoint-800/trainer_state.json ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 22.857142857142858,
5
+ "eval_steps": 100,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 8.333333333333334,
13
+ "grad_norm": 0.8547727465629578,
14
+ "learning_rate": 4.962019382530521e-05,
15
+ "loss": 0.2973,
16
+ "num_input_tokens_seen": 1240440,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 16.666666666666668,
21
+ "grad_norm": 0.5775834321975708,
22
+ "learning_rate": 4.849231551964771e-05,
23
+ "loss": 0.0165,
24
+ "num_input_tokens_seen": 2467560,
25
+ "step": 100
26
+ },
27
+ {
28
+ "epoch": 16.666666666666668,
29
+ "eval_loss": 1.8753944635391235,
30
+ "eval_runtime": 0.0881,
31
+ "eval_samples_per_second": 669.817,
32
+ "eval_steps_per_second": 22.706,
33
+ "num_input_tokens_seen": 2467560,
34
+ "step": 100
35
+ },
36
+ {
37
+ "epoch": 25.0,
38
+ "grad_norm": 2.726205825805664,
39
+ "learning_rate": 4.665063509461097e-05,
40
+ "loss": 0.0117,
41
+ "num_input_tokens_seen": 3714840,
42
+ "step": 150
43
+ },
44
+ {
45
+ "epoch": 33.333333333333336,
46
+ "grad_norm": 0.17272137105464935,
47
+ "learning_rate": 4.415111107797445e-05,
48
+ "loss": 0.0053,
49
+ "num_input_tokens_seen": 4957560,
50
+ "step": 200
51
+ },
52
+ {
53
+ "epoch": 33.333333333333336,
54
+ "eval_loss": 2.176852226257324,
55
+ "eval_runtime": 0.0894,
56
+ "eval_samples_per_second": 660.304,
57
+ "eval_steps_per_second": 22.383,
58
+ "num_input_tokens_seen": 4957560,
59
+ "step": 200
60
+ },
61
+ {
62
+ "epoch": 41.666666666666664,
63
+ "grad_norm": 0.2948448061943054,
64
+ "learning_rate": 4.1069690242163484e-05,
65
+ "loss": 0.0054,
66
+ "num_input_tokens_seen": 6181800,
67
+ "step": 250
68
+ },
69
+ {
70
+ "epoch": 50.0,
71
+ "grad_norm": 0.24040719866752625,
72
+ "learning_rate": 3.7500000000000003e-05,
73
+ "loss": 0.0033,
74
+ "num_input_tokens_seen": 7418880,
75
+ "step": 300
76
+ },
77
+ {
78
+ "epoch": 50.0,
79
+ "eval_loss": 2.383711814880371,
80
+ "eval_runtime": 0.1033,
81
+ "eval_samples_per_second": 571.316,
82
+ "eval_steps_per_second": 19.367,
83
+ "num_input_tokens_seen": 7418880,
84
+ "step": 300
85
+ },
86
+ {
87
+ "epoch": 38.888888888888886,
88
+ "grad_norm": 0.5190167427062988,
89
+ "learning_rate": 4.215604094671835e-05,
90
+ "loss": 0.3195,
91
+ "num_input_tokens_seen": 13014840,
92
+ "step": 350
93
+ },
94
+ {
95
+ "epoch": 44.44444444444444,
96
+ "grad_norm": 0.37368133664131165,
97
+ "learning_rate": 3.9928964792569655e-05,
98
+ "loss": 0.0144,
99
+ "num_input_tokens_seen": 18598920,
100
+ "step": 400
101
+ },
102
+ {
103
+ "epoch": 44.44444444444444,
104
+ "eval_loss": 0.9897297024726868,
105
+ "eval_runtime": 1.0997,
106
+ "eval_samples_per_second": 75.477,
107
+ "eval_steps_per_second": 2.728,
108
+ "num_input_tokens_seen": 18598920,
109
+ "step": 400
110
+ },
111
+ {
112
+ "epoch": 50.0,
113
+ "grad_norm": 0.15123282372951508,
114
+ "learning_rate": 3.7500000000000003e-05,
115
+ "loss": 0.0082,
116
+ "num_input_tokens_seen": 24251520,
117
+ "step": 450
118
+ },
119
+ {
120
+ "epoch": 55.55555555555556,
121
+ "grad_norm": 0.056949373334646225,
122
+ "learning_rate": 3.490199415097892e-05,
123
+ "loss": 0.0012,
124
+ "num_input_tokens_seen": 29856960,
125
+ "step": 500
126
+ },
127
+ {
128
+ "epoch": 55.55555555555556,
129
+ "eval_loss": 1.1057275533676147,
130
+ "eval_runtime": 1.1105,
131
+ "eval_samples_per_second": 74.743,
132
+ "eval_steps_per_second": 2.702,
133
+ "num_input_tokens_seen": 29856960,
134
+ "step": 500
135
+ },
136
+ {
137
+ "epoch": 15.714285714285714,
138
+ "grad_norm": 1.0327025651931763,
139
+ "learning_rate": 4.865818459497911e-05,
140
+ "loss": 1.2219,
141
+ "num_input_tokens_seen": 40827720,
142
+ "step": 550
143
+ },
144
+ {
145
+ "epoch": 17.142857142857142,
146
+ "grad_norm": 0.8191797137260437,
147
+ "learning_rate": 4.8405871765993433e-05,
148
+ "loss": 0.4354,
149
+ "num_input_tokens_seen": 51641040,
150
+ "step": 600
151
+ },
152
+ {
153
+ "epoch": 17.142857142857142,
154
+ "eval_loss": 1.7303279638290405,
155
+ "eval_runtime": 7.2384,
156
+ "eval_samples_per_second": 48.63,
157
+ "eval_steps_per_second": 1.52,
158
+ "num_input_tokens_seen": 51641040,
159
+ "step": 600
160
+ },
161
+ {
162
+ "epoch": 18.571428571428573,
163
+ "grad_norm": 0.4633180797100067,
164
+ "learning_rate": 4.813260751184992e-05,
165
+ "loss": 0.0876,
166
+ "num_input_tokens_seen": 62482320,
167
+ "step": 650
168
+ },
169
+ {
170
+ "epoch": 20.0,
171
+ "grad_norm": 0.23285113275051117,
172
+ "learning_rate": 4.783863644106502e-05,
173
+ "loss": 0.0268,
174
+ "num_input_tokens_seen": 73404120,
175
+ "step": 700
176
+ },
177
+ {
178
+ "epoch": 20.0,
179
+ "eval_loss": 1.9282101392745972,
180
+ "eval_runtime": 7.2488,
181
+ "eval_samples_per_second": 48.56,
182
+ "eval_steps_per_second": 1.517,
183
+ "num_input_tokens_seen": 73404120,
184
+ "step": 700
185
+ },
186
+ {
187
+ "epoch": 21.428571428571427,
188
+ "grad_norm": 0.15514932572841644,
189
+ "learning_rate": 4.752422169756048e-05,
190
+ "loss": 0.0085,
191
+ "num_input_tokens_seen": 84276120,
192
+ "step": 750
193
+ },
194
+ {
195
+ "epoch": 22.857142857142858,
196
+ "grad_norm": 0.12508106231689453,
197
+ "learning_rate": 4.718964472511386e-05,
198
+ "loss": 0.0051,
199
+ "num_input_tokens_seen": 95276640,
200
+ "step": 800
201
+ },
202
+ {
203
+ "epoch": 22.857142857142858,
204
+ "eval_loss": 2.1112966537475586,
205
+ "eval_runtime": 7.2618,
206
+ "eval_samples_per_second": 48.473,
207
+ "eval_steps_per_second": 1.515,
208
+ "num_input_tokens_seen": 95276640,
209
+ "step": 800
210
+ }
211
+ ],
212
+ "logging_steps": 50,
213
+ "max_steps": 5250,
214
+ "num_input_tokens_seen": 95276640,
215
+ "num_train_epochs": 150,
216
+ "save_steps": 100,
217
+ "stateful_callbacks": {
218
+ "TrainerControl": {
219
+ "args": {
220
+ "should_epoch_stop": false,
221
+ "should_evaluate": false,
222
+ "should_log": false,
223
+ "should_save": true,
224
+ "should_training_stop": false
225
+ },
226
+ "attributes": {}
227
+ }
228
+ },
229
+ "total_flos": 3.314993447114375e+18,
230
+ "train_batch_size": 15,
231
+ "trial_name": null,
232
+ "trial_params": null
233
+ }
checkpoint-800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f13b2c9491c1e8cccd04522efe689e7ec8dbb175bc44adcd0a6504597bc2382d
3
+ size 6776
checkpoint-800/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)