0xroyce commited on
Commit
4469264
·
verified ·
1 Parent(s): 5876425

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +168 -74
  2. adapter_config.json +34 -0
  3. adapter_model.safetensors +3 -0
README.md CHANGED
@@ -1,108 +1,202 @@
1
  ---
2
- language: en
3
- license: llama3.1
4
- tags:
5
- - llama
6
- - transformer
7
- - 8b
8
- - 4bit
9
- - instruction-tuning
10
- - conversational
11
- - llama3
12
- - meta
13
- pipeline_tag: text-generation
14
- inference: true
15
- model_creator: 0xroyce
16
- model_type: LLaMA
17
- datasets:
18
- - 0xroyce/Plutus
19
- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
20
  ---
21
 
22
- # NOTE: MODEL IS BEING FINE-TUNED WITH DATEST LATEST
23
 
24
- # Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit
25
 
26
- Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit is a fine-tuned version of the LLaMA-3.1-8B model, specifically optimized for tasks related to finance, economics, trading, psychology, and social engineering. This model leverages the LLaMA architecture and employs 4-bit quantization to deliver high performance in resource-constrained environments while maintaining accuracy and relevance in natural language processing tasks.
27
 
28
- ![Plutus Banner](https://iili.io/djQmWzu.webp)
29
 
30
  ## Model Details
31
 
32
- - **Model Type**: LLaMA
33
- - **Model Size**: 8 Billion Parameters
34
- - **Quantization**: 4-bit (bnb, bitsandbytes)
35
- - **Architecture**: Transformer-based
36
- - **Creator**: [0xroyce](https://huggingface.co/0xroyce)
37
 
38
- ## Training
39
 
40
- Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit was fine-tuned on the [**"Financial, Economic, and Psychological Analysis Texts"** dataset](https://huggingface.co/datasets/0xroyce/Plutus), which is a comprehensive collection of 85 influential books out of a planned 398. This dataset covers key areas such as:
41
 
42
- - **Finance and Investment**: Including stock market analysis, value investing, and exchange-traded funds (ETFs).
43
- - **Trading Strategies**: Focused on technical analysis, options trading, and algorithmic trading methods.
44
- - **Risk Management**: Featuring quantitative approaches to financial risk management and volatility analysis.
45
- - **Behavioral Finance and Psychology**: Exploring the psychological aspects of trading, persuasion, and psychological operations.
46
- - **Social Engineering and Security**: Highlighting manipulation techniques and cybersecurity threats.
47
 
48
- As the dataset contained only 21.36% of its planned content at the time of training, this version of the model is sometimes referred to as the '21% version.' This fine-tuning process enhances the model's ability to generate coherent and contextually relevant text in domains like financial analysis, economic theory, and trading strategies. The 4-bit quantization ensures that the model can be deployed in environments with limited computational resources without compromising performance.
 
 
 
 
 
 
49
 
50
- ## Intended Use
51
 
52
- This model is well-suited for a variety of natural language processing tasks within the finance, economics, psychology, and cybersecurity domains, including but not limited to:
53
 
54
- - **Financial Analysis**: Extracting insights and performing sentiment analysis on financial texts.
55
- - **Economic Modeling**: Generating contextually relevant economic theories and market predictions.
56
- - **Behavioral Finance Research**: Analyzing and generating text related to trading psychology and investor behavior.
57
- - **Cybersecurity and Social Engineering**: Studying manipulation techniques and generating security-related content.
58
 
59
- ## Performance
60
 
61
- While specific benchmark scores for Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit are not provided, the model is designed to offer competitive performance within its parameter range, particularly for tasks involving financial, economic, and security-related data. The 4-bit quantization offers a balance between model size and computational efficiency, making it ideal for deployment in resource-limited settings.
62
 
63
- ## Limitations
64
 
65
- Despite its strengths, the Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit model has some limitations:
66
 
67
- - **Domain-Specific Biases**: The model may generate biased content depending on the input, especially within specialized financial, psychological, or cybersecurity domains.
68
- - **Inference Speed**: Although optimized with 4-bit quantization, real-time application latency may still be an issue depending on the deployment environment.
69
- - **Context Length**: The model has a limited context window, which can affect its ability to process long-form documents or complex multi-turn conversations effectively.
70
 
71
- ## How to Use
72
 
73
- You can load and use the model with the following code:
74
 
75
- ```python
76
- from transformers import AutoModelForCausalLM, AutoTokenizer
77
 
78
- tokenizer = AutoTokenizer.from_pretrained("0xroyce/Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit")
79
- model = AutoModelForCausalLM.from_pretrained("0xroyce/Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit")
80
 
81
- input_text = "Your text here"
82
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids
83
 
84
- output = model.generate(input_ids, max_length=50)
85
- print(tokenizer.decode(output[0], skip_special_tokens=True))
86
- ```
87
 
88
- ## Ethical Considerations
89
 
90
- The Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit model, like other large language models, can generate biased or potentially harmful content. Users are advised to implement content filtering and moderation when deploying this model in public-facing applications. Further fine-tuning is also encouraged to align the model with specific ethical guidelines or domain-specific requirements.
91
 
92
- ## Citation
93
 
94
- If you use this model in your research or applications, please cite it as follows:
95
 
96
- ```bibtex
97
- @misc{0xroyce2024plutus,
98
- author = {0xroyce},
99
- title = {Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit},
100
- year = {2024},
101
- publisher = {Hugging Face},
102
- howpublished = {\\url{https://huggingface.co/0xroyce/Plutus-Meta-Llama-3.1-8B-Instruct-bnb-4bit}},
103
- }
104
- ```
105
 
106
- ## Acknowledgements
107
 
108
- Special thanks to the open-source community and contributors who made this model possible.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
3
+ library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
+ ### Model Description
 
 
 
 
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
 
 
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
 
35
 
36
+ ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Direct Use
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
+ [More Information Needed]
 
 
45
 
46
+ ### Downstream Use [optional]
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
+ [More Information Needed]
 
51
 
52
+ ### Out-of-Scope Use
 
53
 
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
+ [More Information Needed]
 
 
57
 
58
+ ## Bias, Risks, and Limitations
59
 
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
+ [More Information Needed]
63
 
64
+ ### Recommendations
65
 
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
 
 
 
67
 
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "down_proj",
28
+ "gate_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebd4fb7173fc7f68194f0fbe4d425731b9981d6cd3649dfc9b268324f5d51883
3
+ size 167832240